import os import torch import argparse import torchvision from pipeline_videogen import VideoGenPipeline from diffusers.schedulers import DDIMScheduler from diffusers.models import AutoencoderKL from diffusers.models import AutoencoderKLTemporalDecoder from transformers import CLIPTokenizer, CLIPTextModel from omegaconf import OmegaConf import os, sys sys.path.append(os.path.split(sys.path[0])[0]) from models import get_models import imageio from PIL import Image import numpy as np from datasets import video_transforms from torchvision import transforms from einops import rearrange, repeat from utils import dct_low_pass_filter, exchanged_mixed_dct_freq from copy import deepcopy def prepare_image(path, vae, transform_video, device, dtype=torch.float16): with open(path, 'rb') as f: image = Image.open(f).convert('RGB') image = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0).permute(0, 3, 1, 2) image, ori_h, ori_w, crops_coords_top, crops_coords_left = transform_video(image) image = vae.encode(image.to(dtype=dtype, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor) image = image.unsqueeze(2) return image def main(args): if args.seed: torch.manual_seed(args.seed) torch.set_grad_enabled(False) device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 # torch.float16 unet = get_models(args).to(device, dtype=dtype) if args.enable_vae_temporal_decoder: if args.use_dct: vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float64).to(device) else: vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float16).to(device) vae = deepcopy(vae_for_base_content).to(dtype=dtype) else: vae_for_base_content = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae",).to(device, dtype=torch.float64) vae = deepcopy(vae_for_base_content).to(dtype=dtype) tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer") text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=dtype).to(device) # huge # set eval mode unet.eval() vae.eval() text_encoder.eval() scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path, subfolder="scheduler", beta_start=args.beta_start, beta_end=args.beta_end, beta_schedule=args.beta_schedule) videogen_pipeline = VideoGenPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, unet=unet).to(device) # videogen_pipeline.enable_xformers_memory_efficient_attention() # videogen_pipeline.enable_vae_slicing() if not os.path.exists(args.save_img_path): os.makedirs(args.save_img_path) transform_video = video_transforms.Compose([ video_transforms.ToTensorVideo(), video_transforms.SDXLCenterCrop((args.image_size[0], args.image_size[1])), # center crop using shor edge, then resize transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ]) for i, (image, prompt) in enumerate(args.image_prompts): if args.use_dct: base_content = prepare_image("./animated_images/" + image, vae_for_base_content, transform_video, device, dtype=torch.float64).to(device) else: base_content = prepare_image("./animated_images/" + image, vae_for_base_content, transform_video, device, dtype=torch.float16).to(device) if args.use_dct: # filter params print("Using DCT!") base_content_repeat = repeat(base_content, 'b c f h w -> b c (f r) h w', r=15).contiguous() # define filter freq_filter = dct_low_pass_filter(dct_coefficients=base_content, percentage=0.23) noise = torch.randn(1, 4, 15, 40, 64).to(device) # add noise to base_content diffuse_timesteps = torch.full((1,),int(975)) diffuse_timesteps = diffuse_timesteps.long() # 3d content base_content_noise = scheduler.add_noise( original_samples=base_content_repeat.to(device), noise=noise, timesteps=diffuse_timesteps.to(device)) # 3d content latents = exchanged_mixed_dct_freq(noise=noise, base_content=base_content_noise, LPF_3d=freq_filter).to(dtype=torch.float16) base_content = base_content.to(dtype=torch.float16) videos = videogen_pipeline(prompt, latents=latents if args.use_dct else None, base_content=base_content, video_length=args.video_length, height=args.image_size[0], width=args.image_size[1], num_inference_steps=args.num_sampling_steps, guidance_scale=args.guidance_scale, motion_bucket_id=args.motion_bucket_id, enable_vae_temporal_decoder=args.enable_vae_temporal_decoder).video imageio.mimwrite(args.save_img_path + prompt.replace(' ', '_') + '_%04d' % i + '_%04d' % args.run_time + '-imageio.mp4', videos[0], fps=8, quality=8) # highest quality is 10, lowest is 0 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="./configs/sample.yaml") args = parser.parse_args() main(OmegaConf.load(args.config))