import os import gc import imageio import numpy as np import torch import torchvision import cv2 from einops import rearrange from PIL import Image def get_width_and_height_from_image_and_base_resolution(image, base_resolution): target_pixels = int(base_resolution) * int(base_resolution) original_width, original_height = Image.open(image).size ratio = (target_pixels / (original_width * original_height)) ** 0.5 width_slider = round(original_width * ratio) height_slider = round(original_height * ratio) return height_slider, width_slider def color_transfer(sc, dc): """ Transfer color distribution from of sc, referred to dc. Args: sc (numpy.ndarray): input image to be transfered. dc (numpy.ndarray): reference image Returns: numpy.ndarray: Transferred color distribution on the sc. """ def get_mean_and_std(img): x_mean, x_std = cv2.meanStdDev(img) x_mean = np.hstack(np.around(x_mean, 2)) x_std = np.hstack(np.around(x_std, 2)) return x_mean, x_std sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB) s_mean, s_std = get_mean_and_std(sc) dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB) t_mean, t_std = get_mean_and_std(dc) img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean np.putmask(img_n, img_n > 255, 255) np.putmask(img_n, img_n < 0, 0) dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB) return dst def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False): videos = rearrange(videos, "b c t h w -> t b c h w") outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = (x * 255).numpy().astype(np.uint8) outputs.append(Image.fromarray(x)) if color_transfer_post_process: for i in range(1, len(outputs)): outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0]))) os.makedirs(os.path.dirname(path), exist_ok=True) if imageio_backend: if path.endswith("mp4"): imageio.mimsave(path, outputs, fps=fps) else: imageio.mimsave(path, outputs, duration=(1000 * 1/fps)) else: if path.endswith("mp4"): path = path.replace('.mp4', '.gif') outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0) def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size): if validation_image_start is not None and validation_image_end is not None: if type(validation_image_start) is str and os.path.isfile(validation_image_start): image_start = clip_image = Image.open(validation_image_start).convert("RGB") image_start = image_start.resize([sample_size[1], sample_size[0]]) clip_image = clip_image.resize([sample_size[1], sample_size[0]]) else: image_start = clip_image = validation_image_start image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] if type(validation_image_end) is str and os.path.isfile(validation_image_end): image_end = Image.open(validation_image_end).convert("RGB") image_end = image_end.resize([sample_size[1], sample_size[0]]) else: image_end = validation_image_end image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end] if type(image_start) is list: clip_image = clip_image[0] start_video = torch.cat( [torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start], dim=2 ) input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) input_video[:, :, :len(image_start)] = start_video input_video_mask = torch.zeros_like(input_video[:, :1]) input_video_mask[:, :, len(image_start):] = 255 else: input_video = torch.tile( torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), [1, 1, video_length, 1, 1] ) input_video_mask = torch.zeros_like(input_video[:, :1]) input_video_mask[:, :, 1:] = 255 if type(image_end) is list: image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for _image_end in image_end] end_video = torch.cat( [torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in image_end], dim=2 ) input_video[:, :, -len(end_video):] = end_video input_video_mask[:, :, -len(image_end):] = 0 else: image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) input_video_mask[:, :, -1:] = 0 input_video = input_video / 255 elif validation_image_start is not None: if type(validation_image_start) is str and os.path.isfile(validation_image_start): image_start = clip_image = Image.open(validation_image_start).convert("RGB") image_start = image_start.resize([sample_size[1], sample_size[0]]) clip_image = clip_image.resize([sample_size[1], sample_size[0]]) else: image_start = clip_image = validation_image_start image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start] clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image] image_end = None if type(image_start) is list: clip_image = clip_image[0] start_video = torch.cat( [torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start], dim=2 ) input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1]) input_video[:, :, :len(image_start)] = start_video input_video = input_video / 255 input_video_mask = torch.zeros_like(input_video[:, :1]) input_video_mask[:, :, len(image_start):] = 255 else: input_video = torch.tile( torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0), [1, 1, video_length, 1, 1] ) / 255 input_video_mask = torch.zeros_like(input_video[:, :1]) input_video_mask[:, :, 1:, ] = 255 else: image_start = None image_end = None input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]]) input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255 clip_image = None del image_start del image_end gc.collect() return input_video, input_video_mask, clip_image def get_video_to_video_latent(input_video_path, video_length, sample_size, fps=None, validation_video_mask=None): if isinstance(input_video_path, str): cap = cv2.VideoCapture(input_video_path) input_video = [] original_fps = cap.get(cv2.CAP_PROP_FPS) frame_skip = 1 if fps is None else int(original_fps // fps) frame_count = 0 while True: ret, frame = cap.read() if not ret: break if frame_count % frame_skip == 0: frame = cv2.resize(frame, (sample_size[1], sample_size[0])) input_video.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) frame_count += 1 cap.release() else: input_video = input_video_path input_video = torch.from_numpy(np.array(input_video))[:video_length] input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255 if validation_video_mask is not None: validation_video_mask = Image.open(validation_video_mask).convert('L').resize((sample_size[1], sample_size[0])) input_video_mask = np.where(np.array(validation_video_mask) < 240, 0, 255) input_video_mask = torch.from_numpy(np.array(input_video_mask)).unsqueeze(0).unsqueeze(-1).permute([3, 0, 1, 2]).unsqueeze(0) input_video_mask = torch.tile(input_video_mask, [1, 1, input_video.size()[2], 1, 1]) input_video_mask = input_video_mask.to(input_video.device, input_video.dtype) else: input_video_mask = torch.zeros_like(input_video[:, :1]) input_video_mask[:, :, :] = 255 return input_video, input_video_mask, None