# -*- coding: utf-8 -*- """ Created on Tue Apr 8 14:53:45 2025 @author: mritchey """ # streamlit run "C:\Users\mritchey\.spyder-py3\Python Scripts\streamlit projects\weather api\app.py" import glob import os import numpy as np import pandas as pd import plotly.express as px import streamlit as st from geopy.extra.rate_limiter import RateLimiter from geopy.geocoders import Nominatim def geocode(address): try: address2 = address.replace(' ', '+').replace(',', '%2C') df = pd.read_json( f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json') results = df.iloc[:1, 0][0][0]['coordinates'] lat, lon = results['y'], results['x'] except: geolocator = Nominatim(user_agent="GTA Lookup") geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1) location = geolocator.geocode(address) lat, lon = location.latitude, location.longitude return lat, lon @st.cache_data def get_weather_data(lat, lon, start_date, end_date): url = f'https://archive-api.open-meteo.com/v1/archive?latitude={lat}&longitude={lon}&start_date={start_date}&end_date={end_date}&hourly=temperature_2m,precipitation,windspeed_10m,windgusts_10m&models=best_match&temperature_unit=fahrenheit&windspeed_unit=mph&precipitation_unit=inch' df = pd.read_json(url).reset_index() data = pd.DataFrame({c['index']: c['hourly'] for r, c in df.iterrows()}) data['time'] = pd.to_datetime(data['time']) data['date'] = pd.to_datetime(data['time'].dt.date) data = data.query("temperature_2m==temperature_2m") data_agg = data.groupby(['date']).agg({'temperature_2m': ['min', 'mean', 'max'], 'precipitation': ['sum'], 'windspeed_10m': ['min', 'mean', 'max'], 'windgusts_10m': ['min', 'mean', 'max'] }) data_agg.columns = data_agg.columns.to_series().str.join('_') data_agg = data_agg.query("temperature_2m_min==temperature_2m_min") return data.drop(columns=['date']), data_agg @st.cache_data def convert_df(df): return df.to_csv(index=0).encode('utf-8') st.set_page_config(layout="wide") col1, col2 = st.columns((2)) address = st.sidebar.text_input( "Address", "1000 Main St, Cincinnati, OH 45202") start_date = st.sidebar.date_input("Start Date", pd.Timestamp(2022, 9, 28)) end_date = st.sidebar.date_input("End Date", pd.Timestamp(2022, 9, 30)) type_var = st.sidebar.selectbox( 'Type:', ('Gust', 'Wind', 'Temp', 'Precipitation')) hourly_daily = st.sidebar.radio('Aggregate Data', ('Hourly', 'Daily')) start_date = start_date.strftime("%Y-%m-%d") end_date = end_date.strftime("%Y-%m-%d") lat, lon = geocode(address) df_all, df_all_agg = get_weather_data(lat, lon, start_date, end_date) # Keys var_key = {'Gust': 'i10fg', 'Wind': 'wind10', 'Temp': 't2m', 'Precipitation': 'tp'} variable = var_key[type_var] unit_key = {'Gust': 'MPH', 'Wind': 'MPH', 'Temp': 'F', 'Precipitation': 'In.'} unit = unit_key[type_var] cols_key = {'Gust': ['windgusts_10m'], 'Wind': ['windspeed_10m'], 'Temp': ['temperature_2m'], 'Precipitation': ['precipitation']} cols_key_agg = {'Gust': ['windgusts_10m_min', 'windgusts_10m_mean', 'windgusts_10m_max'], 'Wind': ['windspeed_10m_min', 'windspeed_10m_mean', 'windspeed_10m_max'], 'Temp': ['temperature_2m_min', 'temperature_2m_mean', 'temperature_2m_max'], 'Precipitation': ['precipitation_sum']} if hourly_daily == 'Hourly': cols = cols_key[type_var] else: cols = cols_key_agg[type_var] if hourly_daily == 'Hourly': fig = px.line(df_all, x="time", y=cols[0]) df_downloald = df_all else: fig = px.line(df_all_agg.reset_index(), x="date", y=cols[0]) df_downloald = df_all_agg.reset_index() with col1: st.title('Weather Data') st.plotly_chart(fig) csv = convert_df(df_downloald) st.download_button( label="Download data as CSV", data=csv, file_name=f'{start_date}.csv', mime='text/csv') with col2: st.title('') st.markdown(""" """, unsafe_allow_html=True)