from fastapi import FastAPI import uvicorn import pandas as pd import numpy as np import pickle import rasterio import h5py from skimage.morphology import disk app = FastAPI() #Endpoints #Root endpoints @app.get("/") def root(): return {"API": "Hail Docker Data"} def get_hail_data(lat, lon, start_date, end_date, radius_miles, get_max): start_date = pd.Timestamp(str(start_date)).strftime('%Y%m%d') end_date = pd.Timestamp(str(end_date)).strftime('%Y%m%d') date_years = pd.date_range(start=start_date, end=end_date, freq='M') date_range_days = pd.date_range(start_date, end_date) years = list(set([d.year for d in date_years])) if len(years) == 0: years = [pd.Timestamp(start_date).year] # Convert Lat Lon to row & col on Array transform = pickle.load(open('Data/transform_mrms.pkl', 'rb')) row, col = rasterio.transform.rowcol(transform, lon, lat) files = [ 'Data/2023_hail.h5', 'Data/2022_hail.h5', 'Data/2021_hail.h5', 'Data/2020_hail.h5' ] files_choosen = [i for i in files if any(i for j in years if str(j) in i)] # Query and Collect H5 Data all_data = [] all_dates = [] for file in files_choosen: with h5py.File(file, 'r') as f: # Get Dates from H5 dates = f['dates'][:] date_idx = np.where((dates >= int(start_date)) & (dates <= int(end_date)))[0] # Select Data by Date and Radius dates = dates[date_idx] data = f['hail'][date_idx, row-radius_miles:row + radius_miles+1, col-radius_miles:col+radius_miles+1] all_data.append(data) all_dates.append(dates) data_all = np.vstack(all_data) dates_all = np.concatenate(all_dates) # Convert to Inches data_mat = np.where(data_all < 0, 0, data_all)*0.0393701 # Get Radius of Data disk_mask = np.where(disk(radius_miles) == 1, True, False) data_mat = np.where(disk_mask, data_mat, -1).round(3) # Process to DataFrame # Find Max of Data if get_max == True: data_max = np.max(data_mat, axis=(1, 2)) df_data = pd.DataFrame({'Date': dates_all, 'Hail_max': data_max}) # Get all Data else: data_all = list(data_mat) df_data = pd.DataFrame({'Date': dates_all, 'Hail_all': data_all}) df_data['Date'] = pd.to_datetime(df_data['Date'], format='%Y%m%d') df_data = df_data.set_index('Date') df_data = df_data.reindex(date_range_days, fill_value=0).reset_index().rename( columns={'index': 'Date'}) df_data['Date'] = df_data['Date'].dt.strftime('%Y-%m-%d') return df_data @app.get('/Hail_Docker_Data') async def predict(lat: float, lon: float, start_date: str, end_date: str, radius_miles: int, get_max: bool): try: results = get_hail_data(lat, lon, start_date, end_date, radius_miles, get_max) except: results = pd.DataFrame({'Date': ['error'], 'Hail_max': ['error']}) return results.to_json()