import pytorch_lightning as pl import hydra from omegaconf import DictConfig @hydra.main(version_base=None, config_path="../cfg", config_name="config.yaml") def main(cfg: DictConfig): # Apply seed for reproducibility if cfg.seed: pl.seed_everything(cfg.seed) datamodule = hydra.utils.instantiate(cfg.datamodule, _convert_="partial") if __name__ == "__main__": main()