# File 1: models/vae_gan.py import torch import torch.nn as nn import torch.nn.functional as F class VAEEncoder(nn.Module): def __init__(self, input_channels=3, latent_dim=512): super().__init__() self.conv = nn.Sequential( nn.Conv2d(input_channels, 64, 4, 2, 1), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 4, 2, 1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 4, 2, 1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2) ) self.fc_mu = nn.Linear(256*14*14, latent_dim) self.fc_logvar = nn.Linear(256*14*14, latent_dim) def reparameterize(self, mu, logvar): std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return mu + eps*std def forward(self, x): x = self.conv(x) x = x.view(x.size(0), -1) mu, logvar = self.fc_mu(x), self.fc_logvar(x) z = self.reparameterize(mu, logvar) return z, mu, logvar class GANDecoder(nn.Module): def __init__(self, latent_dim=512): super().__init__() self.fc = nn.Sequential( nn.Linear(latent_dim, 1024*7*7), nn.BatchNorm1d(1024*7*7), nn.LeakyReLU(0.2) ) self.conv = nn.Sequential( nn.ConvTranspose2d(1024, 512, 4, 2, 1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2), nn.ConvTranspose2d(512, 256, 4, 2, 1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2), nn.ConvTranspose2d(256, 128, 4, 2, 1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 3, 3, 1, 1), nn.Tanh() ) def forward(self, z): z = self.fc(z) z = z.view(-1, 1024, 7, 7) return self.conv(z) class Discriminator(nn.Module): def __init__(self): super().__init__() self.conv = nn.Sequential( nn.Conv2d(3, 64, 4, 2, 1), nn.LeakyReLU(0.2), nn.Conv2d(64, 128, 4, 2, 1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2), nn.Conv2d(128, 256, 4, 2, 1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2) ) self.fc = nn.Linear(256*14*14, 1) def forward(self, x): x = self.conv(x) x = x.view(x.size(0), -1) return torch.sigmoid(self.fc(x))