import gradio as gr import PIL.Image import transformers from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor import torch import os import string import functools import re import numpy as np import spaces from PIL import Image model_id = "mattraj/curacel-autodamage-1" COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1'] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).eval().to(device) processor = PaliGemmaProcessor.from_pretrained(model_id) def resize_and_pad(image, target_dim): # Calculate the aspect ratio scale_factor = 1 aspect_ratio = image.width / image.height if aspect_ratio > 1: # Width is greater than height new_width = int(target_dim * scale_factor) new_height = int((target_dim / aspect_ratio) * scale_factor) else: # Height is greater than width new_height = int(target_dim * scale_factor) new_width = int(target_dim * aspect_ratio * scale_factor) resized_image = image.resize((new_width, new_height), Image.LANCZOS) # Create a new image with the target dimensions and a white background new_image = Image.new("RGB", (target_dim, target_dim), (255, 255, 255)) new_image.paste(resized_image, ((target_dim - new_width) // 2, (target_dim - new_height) // 2)) return new_image ###### Transformers Inference @spaces.GPU def infer( image: PIL.Image.Image, text: str, max_new_tokens: int ) -> str: inputs = processor(text=text, images=resize_and_pad(image, 448), return_tensors="pt", padding="longest", do_convert_rgb=True).to(device).to(dtype=model.dtype) with torch.no_grad(): generated_ids = model.generate( **inputs, max_length=2048 ) result = processor.decode(generated_ids[0], skip_special_tokens=True) return result ######## Demo INTRO_TEXT = """## Curacel Handwritten Arabic demo\n\n Finetuned from: google/paligemma-3b-pt-448 Translation model demo at: https://prod.arabic-gpt.ai/ Prompts: Translate the Arabic to English: {model output} The following is a diagnosis in Arabic from a medical billing form we need to translate to English. The transcriber is not necessariily accurate so one or more characters or words may be wrong. Given what is written, what is the most likely diagnosis. Think step by step, and think about similar words or mispellings in Arabic. Give multiple arabic diagnoses along with the translation in English for each, then finally select the diagnosis that makes the most sense given what was transcribed and print the English translation as your most likely final translation. Transcribed text: {model output} """ with gr.Blocks(css="style.css") as demo: gr.Markdown(INTRO_TEXT) with gr.Tab("Text Generation"): with gr.Column(): image = gr.Image(type="pil") text_input = gr.Text(label="Input Text") text_output = gr.Text(label="Text Output") chat_btn = gr.Button() chat_inputs = [ image, text_input ] chat_outputs = [ text_output ] chat_btn.click( fn=infer, inputs=chat_inputs, outputs=chat_outputs, ) examples = [["./car-1.png", "detect Front-Windscreen-Damage ; Headlight-Damage ; Major-Rear-Bumper-Dent ; Rear-windscreen-Damage ; RunningBoard-Dent ; Sidemirror-Damage ; Signlight-Damage ; Taillight-Damage ; bonnet-dent ; doorouter-dent ; doorouter-scratch ; fender-dent ; front-bumper-dent ; front-bumper-scratch ; medium-Bodypanel-Dent ; paint-chip ; paint-trace ; pillar-dent ; quaterpanel-dent ; rear-bumper-dent ; rear-bumper-scratch ; roof-dent"]] gr.Markdown("") gr.Examples( examples=examples, inputs=chat_inputs, ) ######### if __name__ == "__main__": demo.queue(max_size=10).launch(debug=True)