import gradio as gr from transformers import AutoTokenizer, AutoModel import torch import spaces from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from typing import List, Dict, Any import time # 创建 FastAPI 应用 app = FastAPI() # 配置 CORS app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # 加载模型和分词器 model_name = "BAAI/bge-m3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) model.eval() class EmbeddingRequest(BaseModel): input: List[str] | str model: str | None = model_name encoding_format: str | None = "float" user: str | None = None class EmbeddingResponse(BaseModel): object: str = "list" data: List[Dict[str, Any]] model: str usage: Dict[str, int] @spaces.GPU() def get_embedding(text: str) -> List[float]: inputs = tokenizer( text, padding=True, truncation=True, max_length=512, return_tensors="pt" ).to(model.device) with torch.no_grad(): outputs = model(**inputs) embeddings = outputs.last_hidden_state[:, 0, :].cpu().numpy() return embeddings[0].tolist() @spaces.GPU() def process_embeddings(request_dict: dict) -> dict: """非异步函数处理嵌入向量""" input_texts = [request_dict["input"]] if isinstance(request_dict["input"], str) else request_dict["input"] embeddings = [] total_tokens = 0 for text in input_texts: tokens = tokenizer.encode(text) total_tokens += len(tokens) embedding = get_embedding(text) embeddings.append({ "object": "embedding", "embedding": embedding, "index": len(embeddings) }) return { "object": "list", "data": embeddings, "model": request_dict.get("model", model_name), "usage": { "prompt_tokens": total_tokens, "total_tokens": total_tokens } } @app.post("/v1/embeddings", response_model=EmbeddingResponse) async def create_embeddings(request: EmbeddingRequest): """异步API端点""" result = process_embeddings(request.dict()) return result @spaces.GPU() def gradio_embedding(text: str) -> Dict: """Gradio接口函数""" request_dict = { "input": text, "model": model_name } return process_embeddings(request_dict) # 创建 Gradio 界面 demo = gr.Interface( fn=gradio_embedding, inputs=gr.Textbox(lines=3, placeholder="输入要进行编码的文本..."), outputs=gr.Json(), title="BGE-M3 Embeddings (OpenAI 兼容格式)", description="输入文本,获取其对应的嵌入向量,返回格式与 OpenAI API 兼容。", examples=[ ["这是一个示例文本。"], ["人工智能正在改变世界。"] ] ) # 挂载 Gradio 应用到 FastAPI app = gr.mount_gradio_app(app, demo, path="/") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)