import gradio as gr import torch from torch import autocast from diffusers import StableDiffusionPipeline from datasets import load_dataset from PIL import Image import re import os model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=os.environ["auth_token"], revision="fp16", torch_dtype=torch.float16) pipe = pipe.to(device) def infer(prompt): generator = torch.Generator(device=device) with autocast("cuda"): images_list = pipe( [prompt], generator=generator) return images_list text = gr.Textbox( label="Enter your prompt", show_label=False, max_lines=1, placeholder="Enter your prompt") gallery = gr.Gallery( label="Generated images", show_label=False) intf = gr.Interface(fn = infer, inputs = text, outputs = gallery) intf.launch()