import requests import gradio as gr import torch from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform IMAGENET_1k_URL = "https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt" LABELS = requests.get(IMAGENET_1k_URL).text.strip().split('\n') model = create_model('resnet50', pretrained=True) transform = create_transform( **resolve_data_config({}, model=model) ) model.eval() def predict_fn(img): img = img.convert('RGB') img = transform(img).unsqueeze(0) with torch.no_grad(): out = model(img) probabilites = torch.nn.functional.softmax(out[0], dim=0) values, indices = torch.topk(probabilites, k=5) return {LABELS[i]: v.item() for i, v in zip(indices, values)} gr.Interface(predict_fn, gr.inputs.Image(type='pil'), outputs='label').launch()