# coding=utf-8 # Copyright 2022 The IDEA Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------------------------ # Copyright (c) 2021 Microsoft. All Rights Reserved. # Copyright (c) 2020 SenseTime. All Rights Reserved. # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------------------------------ # Modified from: # https://github.com/Atten4Vis/ConditionalDETR/blob/main/models/conditional_detr.py # https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_detr.py # https://github.com/facebookresearch/detr/blob/main/d2/detr/detr.py # ------------------------------------------------------------------------------------------------ import math from typing import List import torch import torch.nn as nn import torch.nn.functional as F from detrex.layers.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh from detrex.layers.mlp import MLP from detrex.utils.misc import inverse_sigmoid from detectron2.modeling import detector_postprocess from detectron2.structures import Boxes, ImageList, Instances class ConditionalDETR(nn.Module): """Implement Conditional-DETR in `Conditional DETR for Fast Training Convergence `_ Args: backbone (nn.Module): Backbone module for feature extraction. in_features (List[str]): Selected backbone output features for transformer module. in_channels (int): Dimension of the last feature in `in_features`. position_embedding (nn.Module): Position encoding layer for generating position embeddings. transformer (nn.Module): Transformer module used for further processing features and input queries. embed_dim (int): Hidden dimension for transformer module. num_classes (int): Number of total categories. num_queries (int): Number of proposal dynamic anchor boxes in Transformer criterion (nn.Module): Criterion for calculating the total losses. aux_loss (bool): Whether to calculate auxiliary loss in criterion. Default: True. pixel_mean (List[float]): Pixel mean value for image normalization. Default: [123.675, 116.280, 103.530]. pixel_std (List[float]): Pixel std value for image normalization. Default: [58.395, 57.120, 57.375]. select_box_nums_for_evaluation (int): Select the top-k confidence predicted boxes for inference. Default: 300. device (str): Training device. Default: "cuda". """ def __init__( self, backbone: nn.Module, in_features: List[str], in_channels: int, position_embedding: nn.Module, transformer: nn.Module, embed_dim: int, num_classes: int, num_queries: int, criterion: nn.Module, aux_loss: bool = True, pixel_mean: List[float] = [123.675, 116.280, 103.530], pixel_std: List[float] = [58.395, 57.120, 57.375], select_box_nums_for_evaluation: int = 300, device: str = "cuda", ): super(ConditionalDETR, self).__init__() # define backbone and position embedding module self.backbone = backbone self.in_features = in_features self.position_embedding = position_embedding # project the backbone output feature # into the required dim for transformer block self.input_proj = nn.Conv2d(in_channels, embed_dim, kernel_size=1) # define leanable object query embed and transformer module self.transformer = transformer self.query_embed = nn.Embedding(num_queries, embed_dim) # define classification head and box head self.class_embed = nn.Linear(embed_dim, num_classes) self.bbox_embed = MLP(input_dim=embed_dim, hidden_dim=embed_dim, output_dim=4, num_layers=3) self.num_classes = num_classes # where to calculate auxiliary loss in criterion self.aux_loss = aux_loss self.criterion = criterion # normalizer for input raw images self.device = device pixel_mean = torch.Tensor(pixel_mean).to(self.device).view(3, 1, 1) pixel_std = torch.Tensor(pixel_std).to(self.device).view(3, 1, 1) self.normalizer = lambda x: (x - pixel_mean) / pixel_std # The total nums of selected boxes for evaluation self.select_box_nums_for_evaluation = select_box_nums_for_evaluation self.init_weights() def init_weights(self): """Initialize weights for Conditioanl-DETR.""" prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) self.class_embed.bias.data = torch.ones(self.num_classes) * bias_value nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) def forward(self, batched_inputs): """Forward function of `DAB-DETR` which excepts a list of dict as inputs. Args: batched_inputs (List[dict]): A list of instance dict, and each instance dict must consists of: - dict["image"] (torch.Tensor): The unnormalized image tensor. - dict["height"] (int): The original image height. - dict["width"] (int): The original image width. - dict["instance"] (detectron2.structures.Instances): Image meta informations and ground truth boxes and labels during training. Please refer to https://detectron2.readthedocs.io/en/latest/modules/structures.html#detectron2.structures.Instances for the basic usage of Instances. Returns: dict: Returns a dict with the following elements: - dict["pred_logits"]: the classification logits for all queries. with shape ``[batch_size, num_queries, num_classes]`` - dict["pred_boxes"]: The normalized boxes coordinates for all queries in format ``(x, y, w, h)``. These values are normalized in [0, 1] relative to the size of each individual image (disregarding possible padding). See PostProcess for information on how to retrieve the unnormalized bounding box. - dict["aux_outputs"]: Optional, only returned when auxilary losses are activated. It is a list of dictionnaries containing the two above keys for each decoder layer. """ images = self.preprocess_image(batched_inputs) if self.training: batch_size, _, H, W = images.tensor.shape img_masks = images.tensor.new_ones(batch_size, H, W) for img_id in range(batch_size): img_h, img_w = batched_inputs[img_id]["instances"].image_size img_masks[img_id, :img_h, :img_w] = 0 else: batch_size, _, H, W = images.tensor.shape img_masks = images.tensor.new_zeros(batch_size, H, W) # only use last level feature in Conditional-DETR features = self.backbone(images.tensor)[self.in_features[-1]] features = self.input_proj(features) img_masks = F.interpolate(img_masks[None], size=features.shape[-2:]).to(torch.bool)[0] pos_embed = self.position_embedding(img_masks) # hidden_states: transformer output hidden feature # reference: reference points in format (x, y) with normalized coordinates in range of [0, 1]. hidden_states, reference = self.transformer( features, img_masks, self.query_embed.weight, pos_embed ) reference_before_sigmoid = inverse_sigmoid(reference) outputs_coords = [] for lvl in range(hidden_states.shape[0]): tmp = self.bbox_embed(hidden_states[lvl]) tmp[..., :2] += reference_before_sigmoid outputs_coord = tmp.sigmoid() outputs_coords.append(outputs_coord) outputs_coord = torch.stack(outputs_coords) outputs_class = self.class_embed(hidden_states) output = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]} if self.aux_loss: output["aux_outputs"] = self._set_aux_loss(outputs_class, outputs_coord) if self.training: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] targets = self.prepare_targets(gt_instances) loss_dict = self.criterion(output, targets) weight_dict = self.criterion.weight_dict for k in loss_dict.keys(): if k in weight_dict: loss_dict[k] *= weight_dict[k] return loss_dict else: box_cls = output["pred_logits"] box_pred = output["pred_boxes"] results = self.inference(box_cls, box_pred, images.image_sizes) processed_results = [] for results_per_image, input_per_image, image_size in zip( results, batched_inputs, images.image_sizes ): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"instances": r}) return processed_results @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [ {"pred_logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1]) ] def inference(self, box_cls, box_pred, image_sizes): """Inference function for DAB-DETR Args: box_cls (torch.Tensor): tensor of shape ``(batch_size, num_queries, K)``. The tensor predicts the classification probability for each query. box_pred (torch.Tensor): tensors of shape ``(batch_size, num_queries, 4)``. The tensor predicts 4-vector ``(x, y, w, h)`` box regression values for every queryx image_sizes (List[torch.Size]): the input image sizes Returns: results (List[Instances]): a list of #images elements. """ assert len(box_cls) == len(image_sizes) results = [] prob = box_cls.sigmoid() topk_values, topk_indexes = torch.topk( prob.view(box_cls.shape[0], -1), self.select_box_nums_for_evaluation, dim=1, ) scores = topk_values topk_boxes = torch.div(topk_indexes, box_cls.shape[2], rounding_mode="floor") labels = topk_indexes % box_cls.shape[2] boxes = torch.gather(box_pred, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4)) for i, (scores_per_image, labels_per_image, box_pred_per_image, image_size) in enumerate( zip(scores, labels, boxes, image_sizes) ): result = Instances(image_size) result.pred_boxes = Boxes(box_cxcywh_to_xyxy(box_pred_per_image)) result.pred_boxes.scale(scale_x=image_size[1], scale_y=image_size[0]) result.scores = scores_per_image result.pred_classes = labels_per_image results.append(result) return results def prepare_targets(self, targets): new_targets = [] for targets_per_image in targets: h, w = targets_per_image.image_size image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device) gt_classes = targets_per_image.gt_classes gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy gt_boxes = box_xyxy_to_cxcywh(gt_boxes) new_targets.append({"labels": gt_classes, "boxes": gt_boxes}) return new_targets def preprocess_image(self, batched_inputs): images = [self.normalizer(x["image"].to(self.device)) for x in batched_inputs] images = ImageList.from_tensors(images) return images