# coding=utf-8 # Copyright 2022 The IDEA Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------------------------ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------------------------------ # Misc functions # Modified from: # https://github.com/facebookresearch/detr/blob/main/util/misc.py # ------------------------------------------------------------------------------------------------ from typing import List, Optional import torch import torchvision from torch import Tensor def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor """ Equivalent to ``torch.nn.functional.interpolate``. """ return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) def inverse_sigmoid(x, eps=1e-3): """ The inverse function for sigmoid activation function. Note: It might face numberical issues with fp16 small eps. """ x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2)