import atexit import bisect from copy import copy import multiprocessing as mp from collections import deque import cv2 import torch import detectron2.data.transforms as T from detectron2.data import MetadataCatalog from detectron2.structures import Instances from detectron2.utils.video_visualizer import VideoVisualizer from detectron2.utils.visualizer import ColorMode, Visualizer def filter_predictions_with_confidence(predictions, confidence_threshold=0.5): if "instances" in predictions: preds = predictions["instances"] keep_idxs = preds.scores > confidence_threshold predictions = copy(predictions) # don't modify the original predictions["instances"] = preds[keep_idxs] return predictions class VisualizationDemo(object): def __init__( self, model, min_size_test=800, max_size_test=1333, img_format="RGB", metadata_dataset="coco_2017_val", instance_mode=ColorMode.IMAGE, parallel=False, ): """ Args: cfg (CfgNode): instance_mode (ColorMode): parallel (bool): whether to run the model in different processes from visualization. Useful since the visualization logic can be slow. """ self.metadata = MetadataCatalog.get( metadata_dataset if metadata_dataset is not None else "__unused" ) self.cpu_device = torch.device("cpu") self.instance_mode = instance_mode self.parallel = parallel if parallel: num_gpu = torch.cuda.device_count() self.predictor = AsyncPredictor( model=model, min_size_test=min_size_test, max_size_test=max_size_test, img_format=img_format, metadata_dataset=metadata_dataset, num_gpus=num_gpu, ) else: self.predictor = DefaultPredictor( model=model, min_size_test=min_size_test, max_size_test=max_size_test, img_format=img_format, metadata_dataset=metadata_dataset, ) def run_on_image(self, image, threshold=0.5): """ Args: image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV. Returns: predictions (dict): the output of the model. vis_output (VisImage): the visualized image output. """ vis_output = None predictions = self.predictor(image) predictions = filter_predictions_with_confidence(predictions, threshold) # Convert image from OpenCV BGR format to Matplotlib RGB format. image = image[:, :, ::-1] visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_output = visualizer.draw_panoptic_seg_predictions( panoptic_seg.to(self.cpu_device), segments_info ) else: if "sem_seg" in predictions: vis_output = visualizer.draw_sem_seg( predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) if "instances" in predictions: instances = predictions["instances"].to(self.cpu_device) vis_output = visualizer.draw_instance_predictions(predictions=instances) return predictions, vis_output def _frame_from_video(self, video): while video.isOpened(): success, frame = video.read() if success: yield frame else: break def run_on_video(self, video, threshold=0.5): """ Visualizes predictions on frames of the input video. Args: video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be either a webcam or a video file. Yields: ndarray: BGR visualizations of each video frame. """ video_visualizer = VideoVisualizer(self.metadata, self.instance_mode) def process_predictions(frame, predictions, threshold): predictions = filter_predictions_with_confidence(predictions, threshold) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_frame = video_visualizer.draw_panoptic_seg_predictions( frame, panoptic_seg.to(self.cpu_device), segments_info ) elif "instances" in predictions: predictions = predictions["instances"].to(self.cpu_device) vis_frame = video_visualizer.draw_instance_predictions(frame, predictions) elif "sem_seg" in predictions: vis_frame = video_visualizer.draw_sem_seg( frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) # Converts Matplotlib RGB format to OpenCV BGR format vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR) return vis_frame frame_gen = self._frame_from_video(video) if self.parallel: buffer_size = self.predictor.default_buffer_size frame_data = deque() for cnt, frame in enumerate(frame_gen): frame_data.append(frame) self.predictor.put(frame) if cnt >= buffer_size: frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions, threshold) while len(frame_data): frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions, threshold) else: for frame in frame_gen: yield process_predictions(frame, self.predictor(frame), threshold) class DefaultPredictor: def __init__( self, model, min_size_test=800, max_size_test=1333, img_format="RGB", metadata_dataset="coco_2017_val", ): self.model = model # self.model.eval() self.metadata = MetadataCatalog.get(metadata_dataset) # checkpointer = DetectionCheckpointer(self.model) # checkpointer.load(init_checkpoint) self.aug = T.ResizeShortestEdge([min_size_test, min_size_test], max_size_test) self.input_format = img_format assert self.input_format in ["RGB", "BGR"], self.input_format def __call__(self, original_image): """ Args: original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). Returns: predictions (dict): the output of the model for one image only. See :doc:`/tutorials/models` for details about the format. """ with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258 # Apply pre-processing to image. if self.input_format == "RGB": # whether the model expects BGR inputs or RGB original_image = original_image[:, :, ::-1] height, width = original_image.shape[:2] image = self.aug.get_transform(original_image).apply_image(original_image) image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) inputs = {"image": image, "height": height, "width": width} predictions = self.model([inputs])[0] return predictions class AsyncPredictor: """ A predictor that runs the model asynchronously, possibly on >1 GPUs. Because rendering the visualization takes considerably amount of time, this helps improve throughput a little bit when rendering videos. """ class _StopToken: pass class _PredictWorker(mp.Process): def __init__( self, model, task_queue, result_queue, min_size_test=800, max_size_test=1333, img_format="RGB", metadata_dataset="coco_2017_val", ): self.model = model self.min_size_test = min_size_test self.max_size_test = max_size_test self.img_format = img_format self.metadata_dataset = metadata_dataset self.task_queue = task_queue self.result_queue = result_queue super().__init__() def run(self): predictor = DefaultPredictor( model=self.model, min_size_test=self.min_size_test, max_size_test=self.max_size_test, img_format=self.img_format, metadata_dataset=self.metadata_dataset, ) while True: task = self.task_queue.get() if isinstance(task, AsyncPredictor._StopToken): break idx, data = task result = predictor(data) self.result_queue.put((idx, result)) def __init__(self, cfg, num_gpus: int = 1): """ Args: cfg (CfgNode): num_gpus (int): if 0, will run on CPU """ num_workers = max(num_gpus, 1) self.task_queue = mp.Queue(maxsize=num_workers * 3) self.result_queue = mp.Queue(maxsize=num_workers * 3) self.procs = [] for gpuid in range(max(num_gpus, 1)): cfg = cfg.clone() cfg.defrost() cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" self.procs.append( AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) ) self.put_idx = 0 self.get_idx = 0 self.result_rank = [] self.result_data = [] for p in self.procs: p.start() atexit.register(self.shutdown) def put(self, image): self.put_idx += 1 self.task_queue.put((self.put_idx, image)) def get(self): self.get_idx += 1 # the index needed for this request if len(self.result_rank) and self.result_rank[0] == self.get_idx: res = self.result_data[0] del self.result_data[0], self.result_rank[0] return res while True: # make sure the results are returned in the correct order idx, res = self.result_queue.get() if idx == self.get_idx: return res insert = bisect.bisect(self.result_rank, idx) self.result_rank.insert(insert, idx) self.result_data.insert(insert, res) def __len__(self): return self.put_idx - self.get_idx def __call__(self, image): self.put(image) return self.get() def shutdown(self): for _ in self.procs: self.task_queue.put(AsyncPredictor._StopToken()) @property def default_buffer_size(self): return len(self.procs) * 5