from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image import gradio as gr processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") def predict(image, question): inputs = processor(text=question, images=image, return_tensors="pt") out = model.generate(**inputs, max_new_tokens=100, num_beams=10, temperature=0.7) answer = processor.decode(out[0], skip_special_tokens=True) return answer iface = gr.Interface( fn=predict, inputs=[ gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Faça sua pergunta sobre a imagem"), ], outputs="text", title="Resposta Visual a Perguntas com BLIP", description="Faça upload de uma imagem e faça uma pergunta sobre ela. O modelo BLIP tentará responder!", ) iface.launch(share=True)