from datasets.features import Features, Sequence, Value from evaluate.module import EvaluationModuleInfo from evaluate.evaluation_suite import SubTask import evaluate class Suite(evaluate.EvaluationSuite): def _info(self): return EvaluationModuleInfo( module_type="evaluation_suite", description="dummy metric for tests", citation="insert citation here", features=Features({"predictions": Value("int64"), "references": Value("int64")})) def setup(self): self.preprocessor = None #lambda x: x["text"].lower() print(SubTask) self.suite = [ SubTask( data="imdb", split="test", data_preprocessor=lambda x: x["text"].lower(),#self.preprocessor, args_for_task={"metric": "accuracy", "input_column": "text", "label_column": "label", "label_mapping": { "LABEL_0": 0.0, "LABEL_1": 1.0 } } ), SubTask( data="sst2", split="test[:10]", data_preprocessor=self.preprocessor, # args_for_task={ # "metric": "accuracy", # "input_column": "sentence", # "label_column": "label", # "label_mapping": { # "LABEL_0": 0.0, # "LABEL_1": 1.0 # } # } ) ]