import os import torch from models.core.custom_hooks.shuffle_hooks import ShufflePairedSamplesHook from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import (DistSamplerSeedHook, EpochBasedRunner, OptimizerHook, build_optimizer) from mmpose.core import DistEvalHook, EvalHook, Fp16OptimizerHook from mmpose.datasets import build_dataloader from mmpose.utils import get_root_logger def train_model(model, dataset, val_dataset, cfg, distributed=False, validate=False, timestamp=None, meta=None): """Train model entry function. Args: model (nn.Module): The model to be trained. dataset (Dataset): Train dataset. cfg (dict): The config dict for training. distributed (bool): Whether to use distributed training. Default: False. validate (bool): Whether to do evaluation. Default: False. timestamp (str | None): Local time for runner. Default: None. meta (dict | None): Meta dict to record some important information. Default: None """ logger = get_root_logger(cfg.log_level) # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] dataloader_setting = dict( samples_per_gpu=cfg.data.get('samples_per_gpu', {}), workers_per_gpu=cfg.data.get('workers_per_gpu', {}), # cfg.gpus will be ignored if distributed num_gpus=len(cfg.gpu_ids), dist=distributed, seed=cfg.seed, pin_memory=False, ) dataloader_setting = dict(dataloader_setting, **cfg.data.get('train_dataloader', {})) data_loaders = [ build_dataloader(ds, **dataloader_setting) for ds in dataset ] # put model on gpus if distributed: find_unused_parameters = cfg.get('find_unused_parameters', False) # NOTE: True has been modified to False for faster training. # Sets the `find_unused_parameters` parameter in # torch.nn.parallel.DistributedDataParallel model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) else: model = MMDataParallel( model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) # build runner optimizer = build_optimizer(model, cfg.optimizer) runner = EpochBasedRunner( model, optimizer=optimizer, work_dir=cfg.work_dir, logger=logger, meta=meta) # an ugly workaround to make .log and .log.json filenames the same runner.timestamp = timestamp # fp16 setting fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: optimizer_config = Fp16OptimizerHook( **cfg.optimizer_config, **fp16_cfg, distributed=distributed) elif distributed and 'type' not in cfg.optimizer_config: optimizer_config = OptimizerHook(**cfg.optimizer_config) else: optimizer_config = cfg.optimizer_config # register hooks runner.register_training_hooks(cfg.lr_config, optimizer_config, cfg.checkpoint_config, cfg.log_config, cfg.get('momentum_config', None)) if distributed: runner.register_hook(DistSamplerSeedHook()) shuffle_cfg = cfg.get('shuffle_cfg', None) if shuffle_cfg is not None: for data_loader in data_loaders: runner.register_hook(ShufflePairedSamplesHook(data_loader, **shuffle_cfg)) # register eval hooks if validate: eval_cfg = cfg.get('evaluation', {}) eval_cfg['res_folder'] = os.path.join(cfg.work_dir, eval_cfg['res_folder']) dataloader_setting = dict( # samples_per_gpu=cfg.data.get('samples_per_gpu', {}), samples_per_gpu=1, workers_per_gpu=cfg.data.get('workers_per_gpu', {}), # cfg.gpus will be ignored if distributed num_gpus=len(cfg.gpu_ids), dist=distributed, shuffle=False, pin_memory=False, ) dataloader_setting = dict(dataloader_setting, **cfg.data.get('val_dataloader', {})) val_dataloader = build_dataloader(val_dataset, **dataloader_setting) eval_hook = DistEvalHook if distributed else EvalHook runner.register_hook(eval_hook(val_dataloader, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow, cfg.total_epochs)