dataset: name: mvtec format: mvtec path: ./datasets/MVTec category: wood task: segmentation train_batch_size: 4 eval_batch_size: 4 inference_batch_size: 4 num_workers: 8 image_size: - 224 - 224 center_crop: null normalization: imagenet transform_config: train: null eval: null test_split_mode: from_dir test_split_ratio: 0.2 val_split_mode: same_as_test val_split_ratio: 0.5 model: name: cfa backbone: wide_resnet50_2 gamma_c: 1 gamma_d: 1 num_nearest_neighbors: 3 num_hard_negative_features: 3 radius: 1.0e-05 lr: 0.001 weight_decay: 0.0005 amsgrad: true early_stopping: patience: 5 metric: pixel_AUROC mode: max normalization_method: min_max input_size: - 224 - 224 metrics: image: - AUROC pixel: - AUROC threshold: adaptive: true image_default: null pixel_default: null method: adaptive manual_image: null manual_pixel: null visualization: show_images: false save_images: true log_images: true image_save_path: null mode: full project: seed: 0 path: results/cfa/mvtec/wood/run unique_dir: false logging: logger: [] log_graph: false optimization: export_mode: null trainer: enable_checkpointing: true default_root_dir: results/cfa/mvtec/wood/run gradient_clip_val: 0 gradient_clip_algorithm: norm num_nodes: 1 devices: 1 enable_progress_bar: true overfit_batches: 0.0 track_grad_norm: -1 check_val_every_n_epoch: 1 fast_dev_run: false accumulate_grad_batches: 1 max_epochs: 30 min_epochs: null max_steps: -1 min_steps: null max_time: null limit_train_batches: 1.0 limit_val_batches: 1.0 limit_test_batches: 1.0 limit_predict_batches: 1.0 val_check_interval: 1.0 log_every_n_steps: 50 accelerator: auto strategy: null sync_batchnorm: false precision: 32 enable_model_summary: true num_sanity_val_steps: 0 profiler: null benchmark: false deterministic: false reload_dataloaders_every_n_epochs: 0 auto_lr_find: false replace_sampler_ddp: true detect_anomaly: false auto_scale_batch_size: false plugins: null move_metrics_to_cpu: false multiple_trainloader_mode: max_size_cycle