import pickle import gradio as gr with open("diabetes_classifier.pkl", "rb") as file: loaded_model = pickle.load(file) diabetes_classifier = loaded_model['model'] columns = loaded_model['columns'] def predict_diabetes_func(Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age): input_data = [Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age] input_df = pd.DataFrame([input_data], columns=columns) prediction = diabetes_classifier.predict(input_df) return "Positive" if prediction[0] == 1 else "Negative" iface = gr.Interface( title = "Mashdemy AI Demo _Diabetes Prediction App", description = "Enter the various parameters and click submit to know if the result is Positive or Negative", fn=predict_diabetes_func, # Updated function name inputs=[ gr.Number(label="Pregnancies"), gr.Number(label="Glucose"), gr.Number(label="BloodPressure"), gr.Number(label="SkinThickness"), gr.Number(label="Insulin"), gr.Number(label="BMI"), gr.Number(label="DiabetesPedigreeFunction"), gr.Number(label="Age"), ], outputs="text", live=False, ) iface.launch(debug = True, share= True)