classes = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] class Detection(object): def __init__(self, id: int, xmin: int, ymin: int, xmax:int, ymax:int, conf: float, class_id:int, class_name:str, orig_img_sz: "tuple[int]") -> None: self.id = id self.xmin = xmin self.ymin = ymin self.xmax = xmax self.ymax = ymax self.w = self.xmax - self.xmin self.h = self.ymax - self.ymin self.conf = conf self.class_id = class_id self.class_name = class_name self.orig_img_h = orig_img_sz[1] self.orig_img_w = orig_img_sz[0] def get_hw_ratio(self): return self.h / self.w def get_height_proportion(self): return self.h / self.orig_img_h def get_width_proportion(self): return self.w / self.orig_img_w def contains(self, detection2: "Detection"): if self.xmin <= detection2.xmin and self.xmax >= detection2.xmax and \ self.ymin <= detection2.ymin and self.ymax >= detection2.ymax: return True return False def get_iou(self, detection2: "Detection"): """ Calculate the Intersection over Union (IoU) of two bounding boxes. Returns ------- float in [0, 1] """ assert self.xmin < self.xmax assert self.ymin < self.ymax assert detection2.xmin < detection2.xmax assert detection2.ymin < detection2.ymax # determine the coordinates of the intersection rectangle x_left = max(self.xmin, detection2.xmin) y_top = max(self.ymin, detection2.ymin) x_right = min(self.xmax, detection2.xmax) y_bottom = min(self.ymax, detection2.ymax) if x_right < x_left or y_bottom < y_top: return 0.0 # The intersection of two axis-aligned bounding boxes is always an # axis-aligned bounding box intersection_area = (x_right - x_left) * (y_bottom - y_top) # compute the area of both AABBs bb1_area = (self.xmax - self.xmin) * (self.ymax - self.ymin) bb2_area = (detection2.xmax - detection2.xmin) * (detection2.ymax - detection2.ymin) # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area iou = intersection_area / float(bb1_area + bb2_area - intersection_area) return iou def __str__(self) -> str: return f"[{self.xmin}, {self.ymin}, {self.xmax}, {self.ymax}]"