import math import numpy as np import matplotlib import cv2 eps = 0.01 def alpha_blend_color(color, alpha): """blend color according to point conf """ return [int(c * alpha) for c in color] def draw_bodypose(canvas, candidate, subset, score): H, W, C = canvas.shape candidate = np.array(candidate) subset = np.array(subset) stickwidth = 4 limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ [1, 16], [16, 18], [3, 17], [6, 18]] colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] for i in range(17): for n in range(len(subset)): index = subset[n][np.array(limbSeq[i]) - 1] conf = score[n][np.array(limbSeq[i]) - 1] if conf[0] < 0.3 or conf[1] < 0.3: continue Y = candidate[index.astype(int), 0] * float(W) X = candidate[index.astype(int), 1] * float(H) mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) cv2.fillConvexPoly(canvas, polygon, alpha_blend_color(colors[i], conf[0] * conf[1])) canvas = (canvas * 0.6).astype(np.uint8) for i in range(18): for n in range(len(subset)): index = int(subset[n][i]) if index == -1: continue x, y = candidate[index][0:2] conf = score[n][i] x = int(x * W) y = int(y * H) cv2.circle(canvas, (int(x), int(y)), 4, alpha_blend_color(colors[i], conf), thickness=-1) return canvas def draw_bodypose_white(canvas, candidate, subset, score): H, W, C = canvas.shape candidate = np.array(candidate) subset = np.array(subset) stickwidth = 4 limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ [1, 16], [16, 18], [3, 17], [6, 18]] colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] for i in range(17): for n in range(len(subset)): index = subset[n][np.array(limbSeq[i]) - 1] conf = score[n][np.array(limbSeq[i]) - 1] if conf[0] < 0.3 or conf[1] < 0.3: continue Y = candidate[index.astype(int), 0] * float(W) X = candidate[index.astype(int), 1] * float(H) mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) cv2.fillConvexPoly(canvas, polygon, alpha_blend_color(colors[i], conf[0] * conf[1])) # canvas = (canvas * 0.6).astype(np.uint8) for i in range(18): for n in range(len(subset)): index = int(subset[n][i]) if index == -1: continue x, y = candidate[index][0:2] conf = score[n][i] x = int(x * W) y = int(y * H) cv2.circle(canvas, (int(x), int(y)), 4, alpha_blend_color(colors[i], conf), thickness=-1) return canvas def draw_handpose(canvas, all_hand_peaks, all_hand_scores): H, W, C = canvas.shape edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] for peaks, scores in zip(all_hand_peaks, all_hand_scores): for ie, e in enumerate(edges): x1, y1 = peaks[e[0]] x2, y2 = peaks[e[1]] x1 = int(x1 * W) y1 = int(y1 * H) x2 = int(x2 * W) y2 = int(y2 * H) score = int(scores[e[0]] * scores[e[1]] * 255) if x1 > eps and y1 > eps and x2 > eps and y2 > eps: cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * score, thickness=2) for i, keyponit in enumerate(peaks): x, y = keyponit x = int(x * W) y = int(y * H) score = int(scores[i] * 255) if x > eps and y > eps: cv2.circle(canvas, (x, y), 4, (0, 0, score), thickness=-1) return canvas def draw_facepose(canvas, all_lmks, all_scores): H, W, C = canvas.shape for lmks, scores in zip(all_lmks, all_scores): for lmk, score in zip(lmks, scores): x, y = lmk x = int(x * W) y = int(y * H) conf = int(score * 255) if x > eps and y > eps: cv2.circle(canvas, (x, y), 3, (conf, conf, conf), thickness=-1) return canvas def draw_pose_select_v2(pose, H, W, ref_w=2160): """vis dwpose outputs Args: pose (List): DWposeDetector outputs in dwpose_detector.py H (int): height W (int): width ref_w (int, optional) Defaults to 2160. Returns: np.ndarray: image pixel value in RGB mode """ bodies = pose['bodies'] hands = pose['hands'] sz = min(H, W) sr = (ref_w / sz) if sz != ref_w else 1 ########################################## create zero canvas ################################################## canvas = np.zeros(shape=(int(H*sr), int(W*sr), 3), dtype=np.uint8) ########################################### draw hand pose ##################################################### canvas = draw_handpose(canvas, hands, pose['hands_score']) return cv2.cvtColor(cv2.resize(canvas, (W, H)), cv2.COLOR_BGR2RGB).transpose(2, 0, 1)