# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/models/mutual_self_attention.py from typing import Any, Dict, Optional import torch from einops import rearrange from src.models.attention import TemporalBasicTransformerBlock from .attention import BasicTransformerBlock def torch_dfs(model: torch.nn.Module): result = [model] for child in model.children(): result += torch_dfs(child) return result class ReferenceAttentionControl: def __init__( self, unet, mode="write", do_classifier_free_guidance=False, attention_auto_machine_weight=float("inf"), gn_auto_machine_weight=1.0, style_fidelity=1.0, reference_attn=True, reference_adain=False, fusion_blocks="midup", batch_size=1, ) -> None: # 10. Modify self attention and group norm self.unet = unet assert mode in ["read", "write"] assert fusion_blocks in ["midup", "full"] self.reference_attn = reference_attn self.reference_adain = reference_adain self.fusion_blocks = fusion_blocks self.register_reference_hooks( mode, do_classifier_free_guidance, attention_auto_machine_weight, gn_auto_machine_weight, style_fidelity, reference_attn, reference_adain, fusion_blocks, batch_size=batch_size, ) def register_reference_hooks( self, mode, do_classifier_free_guidance, attention_auto_machine_weight, gn_auto_machine_weight, style_fidelity, reference_attn, reference_adain, dtype=torch.float16, batch_size=1, num_images_per_prompt=1, device=torch.device("cuda"), fusion_blocks="midup", ): MODE = mode do_classifier_free_guidance = do_classifier_free_guidance attention_auto_machine_weight = attention_auto_machine_weight gn_auto_machine_weight = gn_auto_machine_weight style_fidelity = style_fidelity reference_attn = reference_attn reference_adain = reference_adain fusion_blocks = fusion_blocks num_images_per_prompt = num_images_per_prompt dtype = dtype if do_classifier_free_guidance: uc_mask = ( torch.Tensor( [1] * batch_size * num_images_per_prompt * 16 + [0] * batch_size * num_images_per_prompt * 16 ) .to(device) .bool() ) else: uc_mask = ( torch.Tensor([0] * batch_size * num_images_per_prompt * 2) .to(device) .bool() ) def hacked_basic_transformer_inner_forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, audio_cond_fea: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, video_length=None, audio_feature_ratio = 3.0 ): if self.use_ada_layer_norm: # False norm_hidden_states = self.norm1(hidden_states, timestep) elif self.use_ada_layer_norm_zero: ( norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, ) = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype, ) else: norm_hidden_states = self.norm1(hidden_states) # 1. Self-Attention # self.only_cross_attention = False cross_attention_kwargs = ( cross_attention_kwargs if cross_attention_kwargs is not None else {} ) if self.only_cross_attention: attn_output = self.attn1( norm_hidden_states, attention_mask=attention_mask, **cross_attention_kwargs, ) else: if MODE == "write": self.bank.append(norm_hidden_states.clone()) attn_output = self.attn1( norm_hidden_states, attention_mask=attention_mask, **cross_attention_kwargs, ) if MODE == "read": bank_feas = [ rearrange( d.unsqueeze(1).repeat(1, video_length, 1, 1), "b t l c -> (b t) l c", ) for d in self.bank ] modify_norm_hidden_states = torch.cat( [norm_hidden_states] + bank_feas, dim=1 ) # print(f"modify_norm_hidden_states:{modify_norm_hidden_states.shape}") hidden_states_uc = ( self.attn1( norm_hidden_states, encoder_hidden_states=modify_norm_hidden_states, attention_mask=attention_mask, ) + hidden_states ) if do_classifier_free_guidance: hidden_states_c = hidden_states_uc.clone() _uc_mask = uc_mask.clone() # print(hidden_states_c.shape, _uc_mask.shape) if hidden_states.shape[0] != _uc_mask.shape[0]: _uc_mask = ( torch.Tensor( [1] * (hidden_states.shape[0] // 2) + [0] * (hidden_states.shape[0] // 2) ) .to(device) .bool() ) # print(hidden_states_c.shape, norm_hidden_states.shape, hidden_states.shape, _uc_mask.shape) hidden_states_c[_uc_mask] = ( self.attn1( norm_hidden_states[_uc_mask], encoder_hidden_states=norm_hidden_states[_uc_mask], # B * 4096 * 768 attention_mask=attention_mask, ) + hidden_states[_uc_mask] ) hidden_states = hidden_states_c.clone() else: hidden_states = hidden_states_uc # self.bank.clear() if self.attn2 is not None: # Ref Cross-Attention norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) # print("Audio Cross-Attention shapes:", norm_hidden_states.shape, audio_cond_fea.shape) if audio_feature_ratio > 0: # print('#'*5, norm_hidden_states.shape, audio_cond_fea.shape) hidden_states = ( self.attn2( norm_hidden_states, encoder_hidden_states=audio_cond_fea, # B * 50 * 768, attention_mask=attention_mask, ) * audio_feature_ratio + hidden_states ) # print("Audio Cross-Attention max after:", hidden_states.max()) # Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states # Temporal-Attention return hidden_states if self.use_ada_layer_norm_zero: attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = attn_output + hidden_states # 3. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self.use_ada_layer_norm_zero: norm_hidden_states = ( norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ) ff_output = self.ff(norm_hidden_states) if self.use_ada_layer_norm_zero: ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = ff_output + hidden_states return hidden_states if self.reference_attn: if self.fusion_blocks == "midup": attn_modules = [ module for module in ( torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks) ) if isinstance(module, BasicTransformerBlock) or isinstance(module, TemporalBasicTransformerBlock) ] elif self.fusion_blocks == "full": attn_modules = [ module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock) or isinstance(module, TemporalBasicTransformerBlock) ] attn_modules = sorted( attn_modules, key=lambda x: -x.norm1.normalized_shape[0] ) for i, module in enumerate(attn_modules): module._original_inner_forward = module.forward if isinstance(module, BasicTransformerBlock): module.forward = hacked_basic_transformer_inner_forward.__get__( module, BasicTransformerBlock ) if isinstance(module, TemporalBasicTransformerBlock): module.forward = hacked_basic_transformer_inner_forward.__get__( module, TemporalBasicTransformerBlock ) module.bank = [] module.attn_weight = float(i) / float(len(attn_modules)) def update(self, writer, do_classifier_free_guidance=False, dtype=torch.float16): if self.reference_attn: if self.fusion_blocks == "midup": reader_attn_modules = [ module for module in ( torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks) ) if isinstance(module, TemporalBasicTransformerBlock) ] writer_attn_modules = [ module for module in ( torch_dfs(writer.unet.mid_block) + torch_dfs(writer.unet.up_blocks) ) if isinstance(module, BasicTransformerBlock) ] elif self.fusion_blocks == "full": reader_attn_modules = [ module for module in torch_dfs(self.unet) if isinstance(module, TemporalBasicTransformerBlock) ] writer_attn_modules = [ module for module in torch_dfs(writer.unet) if isinstance(module, BasicTransformerBlock) ] reader_attn_modules = sorted( reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0] ) writer_attn_modules = sorted( writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0] ) for r, w in zip(reader_attn_modules, writer_attn_modules): if do_classifier_free_guidance: r.bank = [torch.cat([v, v]).to(dtype) for v in w.bank] else: r.bank = [v.clone().to(dtype) for v in w.bank] def clear(self): if self.reference_attn: if self.fusion_blocks == "midup": reader_attn_modules = [ module for module in ( torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks) ) if isinstance(module, BasicTransformerBlock) or isinstance(module, TemporalBasicTransformerBlock) ] elif self.fusion_blocks == "full": reader_attn_modules = [ module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock) or isinstance(module, TemporalBasicTransformerBlock) ] reader_attn_modules = sorted( reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0] ) for r in reader_attn_modules: r.bank.clear()