import gradio as gr import openai import markdown my_api_key = "sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" # input your api_key initial_prompt = "You are a helpful assistant." class ChatGPT: def __init__(self, apikey) -> None: openai.api_key = apikey self.system = {"role": "system", "content": initial_prompt} self.context = [] self.response = None def get_response(self, messages): self.response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[self.system, *messages], ) statistics = f'本次对话Tokens用量【{self.response["usage"]["total_tokens"]} / 4096】 ( 提问+上文 {self.response["usage"]["prompt_tokens"]},回答 {self.response["usage"]["completion_tokens"]} )' message = self.response["choices"][0]["message"]["content"] message_with_stats = f'{message}\n\n================\n\n{statistics}' message_with_stats = markdown.markdown(message_with_stats) return message, message_with_stats def predict(self, chatbot, input_sentence, context): if len(input_sentence) == 0: return [], context context.append({"role": "user", "content": f"{input_sentence}"}) message, message_with_stats = self.get_response(context) context.append({"role": "assistant", "content": message}) chatbot.append((input_sentence, message_with_stats)) return chatbot, context def retry(self, chatbot, context): if len(context) == 0: return [], [] message, message_with_stats = self.get_response(context[:-1]) context[-1] = {"role": "assistant", "content": message} chatbot[-1] = (context[-2]["content"], message_with_stats) return chatbot, context def update_system(self, new_system_prompt): self.system = {"role": "system", "content": new_system_prompt} return new_system_prompt def delete_last_conversation(self, chatbot, context): if len(context) == 0: return [], [] chatbot = chatbot[:-1] context = context[:-2] return chatbot, context def reduce_token(self, chatbot, context): context.append({"role": "user", "content": "请帮我总结一下上述对话的内容,实现减少tokens的同时,保证对话的质量。在总结中不要加入这一句话。"}) message, message_with_stats = self.get_response(context) self.system = {"role": "system", "content": f"You are a helpful assistant. The content that the Assistant and the User discussed in the previous context is: {message}."} statistics = f'本次对话Tokens用量【{self.response["usage"]["completion_tokens"]+23} / 4096】' optmz_str = markdown.markdown( f"System prompt已经更新, 请继续对话\n\n================\n\n{statistics}" ) chatbot.append(("请帮我总结一下上述对话的内容,实现减少tokens的同时,保证对话的质量。", optmz_str)) context = [] return chatbot, context, self.system["content"] def reset_state(): return [], [] mychatGPT = ChatGPT(my_api_key) with gr.Blocks() as demo: chatbot = gr.Chatbot().style(color_map=("#1D51EE", "#585A5B")) state = gr.State([]) with gr.Column(): txt = gr.Textbox(show_label=False, placeholder="💬 在这里输入").style(container=False) with gr.Row(): emptyBth = gr.Button("新的对话") retryBth = gr.Button("重新生成") delLastBth = gr.Button("删除上条对话") reduceTokenBth = gr.Button("优化Tokens") system = gr.Textbox(show_label=True, placeholder=f"在这里输入新的System Prompt...", label="更改 System prompt").style(container=True) syspromptTxt = gr.Textbox(show_label=True, placeholder=initial_prompt, interactive=False, label="目前的 System prompt").style(container=True) txt.submit(mychatGPT.predict, [chatbot, txt, state], [chatbot, state], show_progress=True) txt.submit(lambda :"", None, txt) emptyBth.click(reset_state, outputs=[chatbot, state]) system.submit(mychatGPT.update_system, system, syspromptTxt) system.submit(lambda :"", None, system) retryBth.click(mychatGPT.retry, [chatbot, state], [chatbot, state], show_progress=True) delLastBth.click(mychatGPT.delete_last_conversation, [chatbot, state], [chatbot, state], show_progress=True) reduceTokenBth.click(mychatGPT.reduce_token, [chatbot, state], [chatbot, state, syspromptTxt], show_progress=True) demo.launch()