import gradio as gr from transformers import MarianMTModel, MarianTokenizer # Load English → Urdu model en_ur_model_name = 'Helsinki-NLP/opus-mt-en-ur' en_ur_tokenizer = MarianTokenizer.from_pretrained(en_ur_model_name) en_ur_model = MarianMTModel.from_pretrained(en_ur_model_name) # Load Urdu → English model ur_en_model_name = 'Helsinki-NLP/opus-mt-ur-en' ur_en_tokenizer = MarianTokenizer.from_pretrained(ur_en_model_name) ur_en_model = MarianMTModel.from_pretrained(ur_en_model_name) # Define translation function def translate_text(text, direction): if direction == "English to Urdu": tokenizer, model = en_ur_tokenizer, en_ur_model else: tokenizer, model = ur_en_tokenizer, ur_en_model inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) translated = model.generate(**inputs) return tokenizer.decode(translated[0], skip_special_tokens=True) # Gradio Interface iface = gr.Interface( fn=translate_text, inputs=[ gr.Textbox(label="Enter Text", placeholder="Type text here..."), gr.Radio(["English to Urdu", "Urdu to English"], label="Translation Direction") ], outputs=gr.Textbox(label="Translated Text"), title="English ↔ Urdu Translator Chatbot", description="Translate between English and Urdu using pre-trained models from Hugging Face." ) # Launch the interface iface.launch()