import gradio as gr from transformers import BarkModel, AutoProcessor import torch from scipy.io.wavfile import write as write_wav import os ''' This app runs a text to voice transformer ''' ### Because we are using CPU we add this code: ### device = "cpu" # load in fp16 model = BarkModel.from_pretrained("suno/bark-small").to(device) processor = AutoProcessor.from_pretrained("suno/bark") voice_preset = "v2/en_speaker_3" def generate_audio(text, preset, output_file_name = "bark_generation"): file_name = output_file_name + ".wav" inputs = processor(text, voice_preset) audio_array = model.generate(**inputs) audio_array = audio_array.cpu().numpy().squeeze() sample_rate = model.generation_config.sample_rate write_wav(file_name, sample_rate, audio_array) return file_name #Presets drop down presets = ["v2/en_speaker_0", "v2/en_speaker_1", "v2/en_speaker_2", "v2/en_speaker_3","v2/en_speaker_4", "v2/en_speaker_5", "v2/en_speaker_6", "v2/en_speaker_9"] #Gradio interface iface = gr.Interface(fn=generate_audio, inputs=["text", gr.components.Dropdown(choices=presets),"text"], outputs="audio") iface.launch()