import gradio as gr import numpy as np from PIL import Image from transformers import AutoProcessor, BlipForConditionalGeneration # HuggingFace # Load model directly from transformers import AutoProcessor, AutoModelForSeq2SeqLM processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = AutoModelForSeq2SeqLM.from_pretrained("Salesforce/blip-image-captioning-base") #processor = # write your code here #model = # write your code here def caption_image(input_image: np.ndarray): # Convert numpy array to PIL Image and convert to RGB raw_image = Image.fromarray(input_image).convert('RGB') # Process the image # You do not need a question for image captioning text = "the image of" inputs = processor(images=image, text=text, return_tensors="pt") # Generate a caption for the image # Generate a caption for the image outputs = model.generate(**inputs, max_length=50) # Decode the generated tokens to text and store it into `caption` # Decode the generated tokens to text caption = processor.decode(outputs[0], skip_special_tokens=True) # Print the caption #print(caption) return caption iface = gr.Interface( fn=caption_image, inputs=gr.Image(), outputs="text", title="Image Captioning", description="This is a simple web app for generating captions for images using a trained model." ) iface = gr.Interface( fn=caption_image, inputs=gr.Image(), outputs="text", title="Image Captioning", description="This is a simple web app for generating captions for images using a trained model." )