import gradio as gr from transformers import AutoFeatureExtractor, AutoTokenizer, SpeechEncoderDecoderModel import torch from transformers import pipeline classifier = pipeline("zero-shot-classification", model="NbAiLab/nb-bert-base-mnli") def sequence_to_classify(sequence, labels): #sequence_to_classify = 'Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september.' #candidate_labels = ['politikk', 'helse', 'sport', 'religion'] hypothesis_template = 'Dette eksempelet er {}.' #classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template, multi_class=True) return classifier(sequence, labels, hypothesis_template=hypothesis_template, multi_class=True) def greet(name): return "Hello " + name + "!!" iface = gr.Interface( title = "Zero-shot Classification of Norwegian Text", description = "Demo of zero-shot classification using NB-Bert base model (Norwegian).", fn=sequence_to_classify, inputs=[gr.inputs.Textbox(lines=2, label="Write a norwegian text you would like to classify...", placeholder="Text here..."), gr.inputs.Textbox(lines=2, label="Possible candidate labels", placeholder="labels here...")], outputs="text") iface.launch()