File size: 6,140 Bytes
d10d213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import json

import pytest
import torch
from PIL import Image

from lbm.data.mappers import (
    KeyRenameMapper,
    KeyRenameMapperConfig,
    MapperWrapper,
    RescaleMapper,
    RescaleMapperConfig,
    TorchvisionMapper,
    TorchvisionMapperConfig,
)


class TestKeyRenameMapper:
    @pytest.fixture()
    def dummy_batch(self):
        return {"image": 1, "text": 2, "label": "dummy_label"}

    @pytest.fixture()
    def mapper(self):
        return KeyRenameMapper(
            KeyRenameMapperConfig(
                key_map={"image": "image_tensor", "text": "text_tensor"}
            )
        )

    def test_mapper(self, mapper, dummy_batch):
        output_data = mapper(dummy_batch)
        assert output_data["image_tensor"] == 1
        assert output_data["text_tensor"] == 2
        assert output_data["label"] == "dummy_label"
        assert "image" not in output_data
        assert "text" not in output_data


class TestKeyRenameMapperWithCondition:
    @pytest.fixture(params=[1, 2])
    def dummy_batch(self, request):
        return {"image": 1, "text": 2, "label": request.param}

    @pytest.fixture(params=[{"image": "image_not_met", "text": "text_not_met"}, None])
    def else_key_map(self, request):
        return request.param

    @pytest.fixture()
    def mapper(self, else_key_map):
        return KeyRenameMapper(
            KeyRenameMapperConfig(
                key_map={"image": "image_tensor", "text": "text_tensor"},
                condition_key="label",
                condition_fn=lambda x: x == 1,
                else_key_map=else_key_map,
            )
        )

    def test_mapper(self, mapper, dummy_batch, else_key_map):
        output_data = mapper(dummy_batch)
        if dummy_batch["label"] == 1:
            assert output_data["image_tensor"] == 1
            assert output_data["text_tensor"] == 2
            assert output_data["label"] == 1
            assert "image" not in output_data
            assert "text" not in output_data
        elif else_key_map is not None:
            assert output_data["image_not_met"] == 1
            assert output_data["text_not_met"] == 2
            assert output_data["label"] == 2
            assert "image" not in output_data
            assert "text" not in output_data
        else:
            assert output_data["image"] == 1
            assert output_data["text"] == 2
            assert output_data["label"] == 2
            assert "image_tensor" not in output_data
            assert "text_tensor" not in output_data


class TestMapperWrapper:
    @pytest.fixture()
    def dummy_batch(self):
        return {"image": 1, "text": 2, "label": "dummy_label"}

    @pytest.fixture()
    def mapper(self):
        return MapperWrapper(
            mappers=[
                KeyRenameMapper(
                    KeyRenameMapperConfig(
                        key_map={"image": "image_tensor", "text": "text_tensor"}
                    )
                ),
                KeyRenameMapper(
                    KeyRenameMapperConfig(
                        key_map={
                            "image_tensor": "image_array",
                            "text_tensor": "text_array",
                        }
                    )
                ),
            ]
        )

    def test_mapper(self, mapper, dummy_batch):
        output_data = mapper(dummy_batch)
        assert output_data["image_array"] == 1
        assert output_data["text_array"] == 2
        assert output_data["label"] == "dummy_label"
        assert "image" not in output_data
        assert "text" not in output_data
        assert "image_tensor" not in output_data
        assert "text_tensor" not in output_data


class TestTorchvisionMapper:
    @pytest.fixture()
    def dummy_batch(self):
        return {
            "image": torch.randn(
                3,
                256,
                256,
            ),
            "text": 2,
            "label": "dummy_label",
        }

    @pytest.fixture()
    def mapper(self):
        return TorchvisionMapper(
            TorchvisionMapperConfig(
                key="image",
                transforms=["CenterCrop", "ToPILImage"],
                transforms_kwargs=[{"size": 224}, {}],
            )
        )

    def test_mapper(self, mapper, dummy_batch):
        output_data = mapper(dummy_batch)
        assert output_data["image"].size == (224, 224)
        assert isinstance(output_data["image"], Image.Image)
        assert output_data["text"] == 2
        assert output_data["label"] == "dummy_label"

    @pytest.fixture()
    def mapper_with_output_key(self):
        return TorchvisionMapper(
            TorchvisionMapperConfig(
                key="image",
                output_key="image_transformed",
                transforms=["CenterCrop", "ToPILImage"],
                transforms_kwargs=[{"size": 224}, {}],
            )
        )

    def test_mapper(self, mapper_with_output_key, dummy_batch):
        output_data = mapper_with_output_key(dummy_batch)
        assert output_data["image_transformed"].size == (224, 224)
        assert isinstance(output_data["image_transformed"], Image.Image)
        assert isinstance(output_data["image"], torch.Tensor)
        assert output_data["image"].size() == (3, 256, 256)
        assert output_data["text"] == 2
        assert output_data["label"] == "dummy_label"


class TestRescaleMapper:
    @pytest.fixture()
    def dummy_batch(self):
        return {
            "image": torch.rand(
                3,
                256,
                256,
            ),
            "text": 2,
            "label": "dummy_label",
        }

    @pytest.fixture()
    def mapper(self):
        return RescaleMapper(
            RescaleMapperConfig(
                input_key="image",
                output_key="image",
            )
        )

    def test_mapper(self, mapper, dummy_batch):
        output_data = mapper(dummy_batch)
        assert torch.all(output_data["image"] <= 1)
        assert torch.all(output_data["image"] >= -1)
        assert output_data["text"] == 2
        assert output_data["label"] == "dummy_label"