## MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer [![arXiv](https://img.shields.io/badge/arXiv-Paper-COLOR.svg)](https://arxiv.org/abs/2409.00750) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-model-yellow)](https://huggingface.co/amphion/maskgct) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-demo-pink)](https://huggingface.co/spaces/amphion/maskgct) [![readme](https://img.shields.io/badge/README-Key%20Features-blue)](./models/tts/maskgct/README.md) ## Overview MaskGCT (**Mask**ed **G**enerative **C**odec **T**ransformer) is *a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision, as well as phone-level duration prediction*. MaskGCT is a two-stage model: in the first stage, the model uses text to predict semantic tokens extracted from a speech self-supervised learning (SSL) model, and in the second stage, the model predicts acoustic tokens conditioned on these semantic tokens. MaskGCT follows the *mask-and-predict* learning paradigm. During training, MaskGCT learns to predict masked semantic or acoustic tokens based on given conditions and prompts. During inference, the model generates tokens of a specified length in a parallel manner. Experiments with 100K hours of in-the-wild speech demonstrate that MaskGCT outperforms the current state-of-the-art zero-shot TTS systems in terms of quality, similarity, and intelligibility. Audio samples are available at [demo page](https://maskgct.github.io/).

## News - **2024/10/19**: We release **MaskGCT**, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision. MaskGCT is trained on Emilia dataset and achieves SOTA zero-shot TTS perfermance. ## Quickstart **Clone and install** ```bash git clone https://github.com/open-mmlab/Amphion.git # create env bash ./models/tts/maskgct/env.sh ``` **Model download** We provide the following pretrained checkpoints: | Model Name | Description | |-------------------|-------------| | [Acoustic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/acoustic_codec) | Converting speech to semantic tokens. | | [Semantic Codec](https://huggingface.co/amphion/MaskGCT/tree/main/semantic_codec) | Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens. | | [MaskGCT-T2S](https://huggingface.co/amphion/MaskGCT/tree/main/t2s_model) | Predicting semantic tokens with text and prompt semantic tokens. | | [MaskGCT-S2A](https://huggingface.co/amphion/MaskGCT/tree/main/s2a_model) | Predicts acoustic tokens conditioned on semantic tokens. | You can download all pretrained checkpoints from [HuggingFace](https://huggingface.co/amphion/MaskGCT/tree/main) or use huggingface api. ```python from huggingface_hub import hf_hub_download # download semantic codec ckpt semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors") # download acoustic codec ckpt codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors") codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors") # download t2s model ckpt t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors") # download s2a model ckpt s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors") s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors") ``` **Basic Usage** You can use the following code to generate speech from text and a prompt speech (the code is also provided in [inference.py](./models/tts/maskgct/maskgct_inference.py)). ```python from models.tts.maskgct.maskgct_utils import * from huggingface_hub import hf_hub_download import safetensors import soundfile as sf if __name__ == "__main__": # build model device = torch.device("cuda:0") cfg_path = "./models/tts/maskgct/config/maskgct.json" cfg = load_config(cfg_path) # 1. build semantic model (w2v-bert-2.0) semantic_model, semantic_mean, semantic_std = build_semantic_model(device) # 2. build semantic codec semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device) # 3. build acoustic codec codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device) # 4. build t2s model t2s_model = build_t2s_model(cfg.model.t2s_model, device) # 5. build s2a model s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device) s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device) # download checkpoint ... # load semantic codec safetensors.torch.load_model(semantic_codec, semantic_code_ckpt) # load acoustic codec safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt) safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt) # load t2s model safetensors.torch.load_model(t2s_model, t2s_model_ckpt) # load s2a model safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt) safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt) # inference prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav" save_path = "[YOUR SAVE PATH]" prompt_text = " We do not break. We never give in. We never back down." target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision." # Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration. target_len = 18 maskgct_inference_pipeline = MaskGCT_Inference_Pipeline( semantic_model, semantic_codec, codec_encoder, codec_decoder, t2s_model, s2a_model_1layer, s2a_model_full, semantic_mean, semantic_std, device, ) recovered_audio = maskgct_inference_pipeline.maskgct_inference( prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len ) sf.write(save_path, recovered_audio, 24000) ``` **Jupyter Notebook** We also provide a [jupyter notebook](./models/tts/maskgct/maskgct_demo.ipynb) to show more details of MaskGCT inference. ## Evaluation Results of MaskGCT | System | SIM-O↑ | WER↓ | FSD↓ | SMOS↑ | CMOS↑ | | :--- | :---: | :---: | :---: | :---: | :---: | | | | **LibriSpeech test-clean** | | Ground Truth | 0.68 | 1.94 | | 4.05±0.12 | 0.00 | | VALL-E | 0.50 | 5.90 | - | 3.47 ±0.26 | -0.52±0.22 | | VoiceBox | 0.64 | 2.03 | 0.762 | 3.80±0.17 | -0.41±0.13 | | NaturalSpeech 3 | 0.67 | 1.94 | 0.786 | 4.26±0.10 | 0.16±0.14 | | VoiceCraft | 0.45 | 4.68 | 0.981 | 3.52±0.21 | -0.33 ±0.16 | | XTTS-v2 | 0.51 | 4.20 | 0.945 | 3.02±0.22 | -0.98 ±0.19 | | MaskGCT | 0.687(0.723) | 2.634(1.976) | 0.886 | 4.27±0.14 | 0.10±0.16 | | MaskGCT(gt length) | 0.697 | 2.012 | 0.746 | 4.33±0.11 | 0.13±0.13 | | | | **SeedTTS test-en** | | Ground Truth | 0.730 | 2.143 | | 3.92±0.15 | 0.00 | | CosyVoice | 0.643 | 4.079 | 0.316 | 3.52±0.17 | -0.41 ±0.18 | | XTTS-v2 | 0.463 | 3.248 | 0.484 | 3.15±0.22 | -0.86±0.19 | | VoiceCraft | 0.470 | 7.556 | 0.226 | 3.18±0.20 | -1.08 ±0.15 | | MaskGCT | 0.717(0.760) | 2.623(1.283) | 0.188 | 4.24 ±0.12 | 0.03 ±0.14 | | MaskGCT(gt length) | 0.728 | 2.466 | 0.159 | 4.13 ±0.17 | 0.12 ±0.15 | | | | **SeedTTS test-zh** | | Ground Truth | 0.750 | 1.254 | | 3.86 ±0.17 | 0.00 | | CosyVoice | 0.750 | 4.089 | 0.276 | 3.54 ±0.12 | -0.45 ±0.15 | | XTTS-v2 | 0.635 | 2.876 | 0.413 | 2.95 ±0.18 | -0.81 ±0.22 | | MaskGCT | 0.774(0.805) | 2.273(0.843) | 0.106 | 4.09 ±0.12 | 0.05 ±0.17 | | MaskGCT(gt length) | 0.777 | 2.183 | 0.101 | 4.11 ±0.12 | 0.08±0.18 | ## Citations If you use MaskGCT in your research, please cite the following paper: ```bibtex @article{wang2024maskgct, title={MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer}, author={Wang, Yuancheng and Zhan, Haoyue and Liu, Liwei and Zeng, Ruihong and Guo, Haotian and Zheng, Jiachen and Zhang, Qiang and Zhang, Shunsi and Wu, Zhizheng}, journal={arXiv preprint arXiv:2409.00750}, year={2024} } @article{zhang2023amphion, title={Amphion: An open-source audio, music and speech generation toolkit}, author={Zhang, Xueyao and Xue, Liumeng and Wang, Yuancheng and Gu, Yicheng and Chen, Xi and Fang, Zihao and Chen, Haopeng and Zou, Lexiao and Wang, Chaoren and Han, Jun and others}, journal={arXiv preprint arXiv:2312.09911}, year={2023} } ```