# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import numpy as np import skimage.io as io # from FaceSDK.face_sdk import FaceDetection # from face_sdk import FaceDetection import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from skimage.transform import SimilarityTransform from skimage.transform import warp from PIL import Image import torch.nn.functional as F import torchvision as tv import torchvision.utils as vutils import time import cv2 import os from skimage import img_as_ubyte import json import argparse import dlib def _standard_face_pts(): pts = ( np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) / 256.0 - 1.0 ) return np.reshape(pts, (5, 2)) def _origin_face_pts(): pts = np.array([196.0, 226.0, 316.0, 226.0, 256.0, 286.0, 220.0, 360.4, 292.0, 360.4], np.float32) return np.reshape(pts, (5, 2)) def get_landmark(face_landmarks, id): part = face_landmarks.part(id) x = part.x y = part.y return (x, y) def search(face_landmarks): x1, y1 = get_landmark(face_landmarks, 36) x2, y2 = get_landmark(face_landmarks, 39) x3, y3 = get_landmark(face_landmarks, 42) x4, y4 = get_landmark(face_landmarks, 45) x_nose, y_nose = get_landmark(face_landmarks, 30) x_left_mouth, y_left_mouth = get_landmark(face_landmarks, 48) x_right_mouth, y_right_mouth = get_landmark(face_landmarks, 54) x_left_eye = int((x1 + x2) / 2) y_left_eye = int((y1 + y2) / 2) x_right_eye = int((x3 + x4) / 2) y_right_eye = int((y3 + y4) / 2) results = np.array( [ [x_left_eye, y_left_eye], [x_right_eye, y_right_eye], [x_nose, y_nose], [x_left_mouth, y_left_mouth], [x_right_mouth, y_right_mouth], ] ) return results def compute_transformation_matrix(img, landmark, normalize, target_face_scale=1.0): std_pts = _standard_face_pts() # [-1,1] target_pts = (std_pts * target_face_scale + 1) / 2 * 512.0 # print(target_pts) h, w, c = img.shape if normalize == True: landmark[:, 0] = landmark[:, 0] / h * 2 - 1.0 landmark[:, 1] = landmark[:, 1] / w * 2 - 1.0 # print(landmark) affine = SimilarityTransform() affine.estimate(target_pts, landmark) return affine.params def show_detection(image, box, landmark): plt.imshow(image) print(box[2] - box[0]) plt.gca().add_patch( Rectangle( (box[1], box[0]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor="r", facecolor="none" ) ) plt.scatter(landmark[0][0], landmark[0][1]) plt.scatter(landmark[1][0], landmark[1][1]) plt.scatter(landmark[2][0], landmark[2][1]) plt.scatter(landmark[3][0], landmark[3][1]) plt.scatter(landmark[4][0], landmark[4][1]) plt.show() def affine2theta(affine, input_w, input_h, target_w, target_h): # param = np.linalg.inv(affine) param = affine theta = np.zeros([2, 3]) theta[0, 0] = param[0, 0] * input_h / target_h theta[0, 1] = param[0, 1] * input_w / target_h theta[0, 2] = (2 * param[0, 2] + param[0, 0] * input_h + param[0, 1] * input_w) / target_h - 1 theta[1, 0] = param[1, 0] * input_h / target_w theta[1, 1] = param[1, 1] * input_w / target_w theta[1, 2] = (2 * param[1, 2] + param[1, 0] * input_h + param[1, 1] * input_w) / target_w - 1 return theta if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--url", type=str, default="/home/jingliao/ziyuwan/celebrities", help="input") parser.add_argument( "--save_url", type=str, default="/home/jingliao/ziyuwan/celebrities_detected_face_reid", help="output" ) opts = parser.parse_args() url = opts.url save_url = opts.save_url ### If the origin url is None, then we don't need to reid the origin image os.makedirs(url, exist_ok=True) os.makedirs(save_url, exist_ok=True) face_detector = dlib.get_frontal_face_detector() landmark_locator = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") count = 0 map_id = {} for x in os.listdir(url): img_url = os.path.join(url, x) pil_img = Image.open(img_url).convert("RGB") image = np.array(pil_img) start = time.time() faces = face_detector(image) done = time.time() if len(faces) == 0: print("Warning: There is no face in %s" % (x)) continue print(len(faces)) if len(faces) > 0: for face_id in range(len(faces)): current_face = faces[face_id] face_landmarks = landmark_locator(image, current_face) current_fl = search(face_landmarks) affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3) aligned_face = warp(image, affine, output_shape=(512, 512, 3)) img_name = x[:-4] + "_" + str(face_id + 1) io.imsave(os.path.join(save_url, img_name + ".png"), img_as_ubyte(aligned_face)) count += 1 if count % 1000 == 0: print("%d have finished ..." % (count))