# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os import time import numpy as np # Helper class that keeps track of training iterations class IterationCounter: def __init__(self, opt, dataset_size): self.opt = opt self.dataset_size = dataset_size self.first_epoch = 1 self.total_epochs = opt.niter + opt.niter_decay self.epoch_iter = 0 # iter number within each epoch self.iter_record_path = os.path.join(self.opt.checkpoints_dir, self.opt.name, "iter.txt") if opt.isTrain and opt.continue_train: try: self.first_epoch, self.epoch_iter = np.loadtxt( self.iter_record_path, delimiter=",", dtype=int ) print("Resuming from epoch %d at iteration %d" % (self.first_epoch, self.epoch_iter)) except: print( "Could not load iteration record at %s. Starting from beginning." % self.iter_record_path ) self.total_steps_so_far = (self.first_epoch - 1) * dataset_size + self.epoch_iter # return the iterator of epochs for the training def training_epochs(self): return range(self.first_epoch, self.total_epochs + 1) def record_epoch_start(self, epoch): self.epoch_start_time = time.time() self.epoch_iter = 0 self.last_iter_time = time.time() self.current_epoch = epoch def record_one_iteration(self): current_time = time.time() # the last remaining batch is dropped (see data/__init__.py), # so we can assume batch size is always opt.batchSize self.time_per_iter = (current_time - self.last_iter_time) / self.opt.batchSize self.last_iter_time = current_time self.total_steps_so_far += self.opt.batchSize self.epoch_iter += self.opt.batchSize def record_epoch_end(self): current_time = time.time() self.time_per_epoch = current_time - self.epoch_start_time print( "End of epoch %d / %d \t Time Taken: %d sec" % (self.current_epoch, self.total_epochs, self.time_per_epoch) ) if self.current_epoch % self.opt.save_epoch_freq == 0: np.savetxt(self.iter_record_path, (self.current_epoch + 1, 0), delimiter=",", fmt="%d") print("Saved current iteration count at %s." % self.iter_record_path) def record_current_iter(self): np.savetxt(self.iter_record_path, (self.current_epoch, self.epoch_iter), delimiter=",", fmt="%d") print("Saved current iteration count at %s." % self.iter_record_path) def needs_saving(self): return (self.total_steps_so_far % self.opt.save_latest_freq) < self.opt.batchSize def needs_printing(self): return (self.total_steps_so_far % self.opt.print_freq) < self.opt.batchSize def needs_displaying(self): return (self.total_steps_so_far % self.opt.display_freq) < self.opt.batchSize