import cv2 import numpy as np import torch from torch.nn import functional as F def filter2D(img, kernel): """PyTorch version of cv2.filter2D Args: img (Tensor): (b, c, h, w) kernel (Tensor): (b, k, k) """ k = kernel.size(-1) b, c, h, w = img.size() if k % 2 == 1: img = F.pad(img, (k // 2, k // 2, k // 2, k // 2), mode='reflect') else: raise ValueError('Wrong kernel size') ph, pw = img.size()[-2:] if kernel.size(0) == 1: # apply the same kernel to all batch images img = img.view(b * c, 1, ph, pw) kernel = kernel.view(1, 1, k, k) return F.conv2d(img, kernel, padding=0).view(b, c, h, w) else: img = img.view(1, b * c, ph, pw) kernel = kernel.view(b, 1, k, k).repeat(1, c, 1, 1).view(b * c, 1, k, k) return F.conv2d(img, kernel, groups=b * c).view(b, c, h, w) def usm_sharp(img, weight=0.5, radius=50, threshold=10): """USM sharpening. Input image: I; Blurry image: B. 1. sharp = I + weight * (I - B) 2. Mask = 1 if abs(I - B) > threshold, else: 0 3. Blur mask: 4. Out = Mask * sharp + (1 - Mask) * I Args: img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. weight (float): Sharp weight. Default: 1. radius (float): Kernel size of Gaussian blur. Default: 50. threshold (int): """ if radius % 2 == 0: radius += 1 blur = cv2.GaussianBlur(img, (radius, radius), 0) residual = img - blur mask = np.abs(residual) * 255 > threshold mask = mask.astype('float32') soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) sharp = img + weight * residual sharp = np.clip(sharp, 0, 1) return soft_mask * sharp + (1 - soft_mask) * img class USMSharp(torch.nn.Module): def __init__(self, radius=50, sigma=0): super(USMSharp, self).__init__() if radius % 2 == 0: radius += 1 self.radius = radius kernel = cv2.getGaussianKernel(radius, sigma) kernel = torch.FloatTensor(np.dot(kernel, kernel.transpose())).unsqueeze_(0) self.register_buffer('kernel', kernel) def forward(self, img, weight=0.5, threshold=10): blur = filter2D(img, self.kernel) residual = img - blur mask = torch.abs(residual) * 255 > threshold mask = mask.float() soft_mask = filter2D(mask, self.kernel) sharp = img + weight * residual sharp = torch.clip(sharp, 0, 1) return soft_mask * sharp + (1 - soft_mask) * img