import torch from torch import nn as nn from torch.nn import functional as F from basicsr.utils.registry import ARCH_REGISTRY from .arch_util import ResidualBlockNoBN, flow_warp, make_layer from .edvr_arch import PCDAlignment, TSAFusion from .spynet_arch import SpyNet @ARCH_REGISTRY.register() class BasicVSR(nn.Module): """A recurrent network for video SR. Now only x4 is supported. Args: num_feat (int): Number of channels. Default: 64. num_block (int): Number of residual blocks for each branch. Default: 15 spynet_path (str): Path to the pretrained weights of SPyNet. Default: None. """ def __init__(self, num_feat=64, num_block=15, spynet_path=None): super().__init__() self.num_feat = num_feat # alignment self.spynet = SpyNet(spynet_path) # propagation self.backward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block) self.forward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block) # reconstruction self.fusion = nn.Conv2d(num_feat * 2, num_feat, 1, 1, 0, bias=True) self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1, bias=True) self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1, bias=True) self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1) self.conv_last = nn.Conv2d(64, 3, 3, 1, 1) self.pixel_shuffle = nn.PixelShuffle(2) # activation functions self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) def get_flow(self, x): b, n, c, h, w = x.size() x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w) x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w) flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w) flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w) return flows_forward, flows_backward def forward(self, x): """Forward function of BasicVSR. Args: x: Input frames with shape (b, n, c, h, w). n is the temporal dimension / number of frames. """ flows_forward, flows_backward = self.get_flow(x) b, n, _, h, w = x.size() # backward branch out_l = [] feat_prop = x.new_zeros(b, self.num_feat, h, w) for i in range(n - 1, -1, -1): x_i = x[:, i, :, :, :] if i < n - 1: flow = flows_backward[:, i, :, :, :] feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) feat_prop = torch.cat([x_i, feat_prop], dim=1) feat_prop = self.backward_trunk(feat_prop) out_l.insert(0, feat_prop) # forward branch feat_prop = torch.zeros_like(feat_prop) for i in range(0, n): x_i = x[:, i, :, :, :] if i > 0: flow = flows_forward[:, i - 1, :, :, :] feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) feat_prop = torch.cat([x_i, feat_prop], dim=1) feat_prop = self.forward_trunk(feat_prop) # upsample out = torch.cat([out_l[i], feat_prop], dim=1) out = self.lrelu(self.fusion(out)) out = self.lrelu(self.pixel_shuffle(self.upconv1(out))) out = self.lrelu(self.pixel_shuffle(self.upconv2(out))) out = self.lrelu(self.conv_hr(out)) out = self.conv_last(out) base = F.interpolate(x_i, scale_factor=4, mode='bilinear', align_corners=False) out += base out_l[i] = out return torch.stack(out_l, dim=1) class ConvResidualBlocks(nn.Module): """Conv and residual block used in BasicVSR. Args: num_in_ch (int): Number of input channels. Default: 3. num_out_ch (int): Number of output channels. Default: 64. num_block (int): Number of residual blocks. Default: 15. """ def __init__(self, num_in_ch=3, num_out_ch=64, num_block=15): super().__init__() self.main = nn.Sequential( nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1, bias=True), nn.LeakyReLU(negative_slope=0.1, inplace=True), make_layer(ResidualBlockNoBN, num_block, num_feat=num_out_ch)) def forward(self, fea): return self.main(fea) @ARCH_REGISTRY.register() class IconVSR(nn.Module): """IconVSR, proposed also in the BasicVSR paper. Args: num_feat (int): Number of channels. Default: 64. num_block (int): Number of residual blocks for each branch. Default: 15. keyframe_stride (int): Keyframe stride. Default: 5. temporal_padding (int): Temporal padding. Default: 2. spynet_path (str): Path to the pretrained weights of SPyNet. Default: None. edvr_path (str): Path to the pretrained EDVR model. Default: None. """ def __init__(self, num_feat=64, num_block=15, keyframe_stride=5, temporal_padding=2, spynet_path=None, edvr_path=None): super().__init__() self.num_feat = num_feat self.temporal_padding = temporal_padding self.keyframe_stride = keyframe_stride # keyframe_branch self.edvr = EDVRFeatureExtractor(temporal_padding * 2 + 1, num_feat, edvr_path) # alignment self.spynet = SpyNet(spynet_path) # propagation self.backward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True) self.backward_trunk = ConvResidualBlocks(num_feat + 3, num_feat, num_block) self.forward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True) self.forward_trunk = ConvResidualBlocks(2 * num_feat + 3, num_feat, num_block) # reconstruction self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1, bias=True) self.upconv2 = nn.Conv2d(num_feat, 64 * 4, 3, 1, 1, bias=True) self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1) self.conv_last = nn.Conv2d(64, 3, 3, 1, 1) self.pixel_shuffle = nn.PixelShuffle(2) # activation functions self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) def pad_spatial(self, x): """Apply padding spatially. Since the PCD module in EDVR requires that the resolution is a multiple of 4, we apply padding to the input LR images if their resolution is not divisible by 4. Args: x (Tensor): Input LR sequence with shape (n, t, c, h, w). Returns: Tensor: Padded LR sequence with shape (n, t, c, h_pad, w_pad). """ n, t, c, h, w = x.size() pad_h = (4 - h % 4) % 4 pad_w = (4 - w % 4) % 4 # padding x = x.view(-1, c, h, w) x = F.pad(x, [0, pad_w, 0, pad_h], mode='reflect') return x.view(n, t, c, h + pad_h, w + pad_w) def get_flow(self, x): b, n, c, h, w = x.size() x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w) x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w) flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w) flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w) return flows_forward, flows_backward def get_keyframe_feature(self, x, keyframe_idx): if self.temporal_padding == 2: x = [x[:, [4, 3]], x, x[:, [-4, -5]]] elif self.temporal_padding == 3: x = [x[:, [6, 5, 4]], x, x[:, [-5, -6, -7]]] x = torch.cat(x, dim=1) num_frames = 2 * self.temporal_padding + 1 feats_keyframe = {} for i in keyframe_idx: feats_keyframe[i] = self.edvr(x[:, i:i + num_frames].contiguous()) return feats_keyframe def forward(self, x): b, n, _, h_input, w_input = x.size() x = self.pad_spatial(x) h, w = x.shape[3:] keyframe_idx = list(range(0, n, self.keyframe_stride)) if keyframe_idx[-1] != n - 1: keyframe_idx.append(n - 1) # last frame is a keyframe # compute flow and keyframe features flows_forward, flows_backward = self.get_flow(x) feats_keyframe = self.get_keyframe_feature(x, keyframe_idx) # backward branch out_l = [] feat_prop = x.new_zeros(b, self.num_feat, h, w) for i in range(n - 1, -1, -1): x_i = x[:, i, :, :, :] if i < n - 1: flow = flows_backward[:, i, :, :, :] feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) if i in keyframe_idx: feat_prop = torch.cat([feat_prop, feats_keyframe[i]], dim=1) feat_prop = self.backward_fusion(feat_prop) feat_prop = torch.cat([x_i, feat_prop], dim=1) feat_prop = self.backward_trunk(feat_prop) out_l.insert(0, feat_prop) # forward branch feat_prop = torch.zeros_like(feat_prop) for i in range(0, n): x_i = x[:, i, :, :, :] if i > 0: flow = flows_forward[:, i - 1, :, :, :] feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) if i in keyframe_idx: feat_prop = torch.cat([feat_prop, feats_keyframe[i]], dim=1) feat_prop = self.forward_fusion(feat_prop) feat_prop = torch.cat([x_i, out_l[i], feat_prop], dim=1) feat_prop = self.forward_trunk(feat_prop) # upsample out = self.lrelu(self.pixel_shuffle(self.upconv1(feat_prop))) out = self.lrelu(self.pixel_shuffle(self.upconv2(out))) out = self.lrelu(self.conv_hr(out)) out = self.conv_last(out) base = F.interpolate(x_i, scale_factor=4, mode='bilinear', align_corners=False) out += base out_l[i] = out return torch.stack(out_l, dim=1)[..., :4 * h_input, :4 * w_input] class EDVRFeatureExtractor(nn.Module): """EDVR feature extractor used in IconVSR. Args: num_input_frame (int): Number of input frames. num_feat (int): Number of feature channels load_path (str): Path to the pretrained weights of EDVR. Default: None. """ def __init__(self, num_input_frame, num_feat, load_path): super(EDVRFeatureExtractor, self).__init__() self.center_frame_idx = num_input_frame // 2 # extract pyramid features self.conv_first = nn.Conv2d(3, num_feat, 3, 1, 1) self.feature_extraction = make_layer(ResidualBlockNoBN, 5, num_feat=num_feat) self.conv_l2_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1) self.conv_l2_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_l3_1 = nn.Conv2d(num_feat, num_feat, 3, 2, 1) self.conv_l3_2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) # pcd and tsa module self.pcd_align = PCDAlignment(num_feat=num_feat, deformable_groups=8) self.fusion = TSAFusion(num_feat=num_feat, num_frame=num_input_frame, center_frame_idx=self.center_frame_idx) # activation function self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) if load_path: self.load_state_dict(torch.load(load_path, map_location=lambda storage, loc: storage)['params']) def forward(self, x): b, n, c, h, w = x.size() # extract features for each frame # L1 feat_l1 = self.lrelu(self.conv_first(x.view(-1, c, h, w))) feat_l1 = self.feature_extraction(feat_l1) # L2 feat_l2 = self.lrelu(self.conv_l2_1(feat_l1)) feat_l2 = self.lrelu(self.conv_l2_2(feat_l2)) # L3 feat_l3 = self.lrelu(self.conv_l3_1(feat_l2)) feat_l3 = self.lrelu(self.conv_l3_2(feat_l3)) feat_l1 = feat_l1.view(b, n, -1, h, w) feat_l2 = feat_l2.view(b, n, -1, h // 2, w // 2) feat_l3 = feat_l3.view(b, n, -1, h // 4, w // 4) # PCD alignment ref_feat_l = [ # reference feature list feat_l1[:, self.center_frame_idx, :, :, :].clone(), feat_l2[:, self.center_frame_idx, :, :, :].clone(), feat_l3[:, self.center_frame_idx, :, :, :].clone() ] aligned_feat = [] for i in range(n): nbr_feat_l = [ # neighboring feature list feat_l1[:, i, :, :, :].clone(), feat_l2[:, i, :, :, :].clone(), feat_l3[:, i, :, :, :].clone() ] aligned_feat.append(self.pcd_align(nbr_feat_l, ref_feat_l)) aligned_feat = torch.stack(aligned_feat, dim=1) # (b, t, c, h, w) # TSA fusion return self.fusion(aligned_feat)