import json import sys from pathlib import Path import torch import yaml from tqdm import tqdm sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path from utils.datasets import LoadImagesAndLabels from utils.datasets import img2label_paths from utils.general import colorstr, xywh2xyxy, check_dataset try: import wandb from wandb import init, finish except ImportError: wandb = None WANDB_ARTIFACT_PREFIX = 'wandb-artifact://' def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX): return from_string[len(prefix):] def check_wandb_config_file(data_config_file): wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path if Path(wandb_config).is_file(): return wandb_config return data_config_file def get_run_info(run_path): run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX)) run_id = run_path.stem project = run_path.parent.stem model_artifact_name = 'run_' + run_id + '_model' return run_id, project, model_artifact_name def check_wandb_resume(opt): process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None if isinstance(opt.resume, str): if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): if opt.global_rank not in [-1, 0]: # For resuming DDP runs run_id, project, model_artifact_name = get_run_info(opt.resume) api = wandb.Api() artifact = api.artifact(project + '/' + model_artifact_name + ':latest') modeldir = artifact.download() opt.weights = str(Path(modeldir) / "last.pt") return True return None def process_wandb_config_ddp_mode(opt): with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict train_dir, val_dir = None, None if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX): api = wandb.Api() train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias) train_dir = train_artifact.download() train_path = Path(train_dir) / 'data/images/' data_dict['train'] = str(train_path) if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX): api = wandb.Api() val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias) val_dir = val_artifact.download() val_path = Path(val_dir) / 'data/images/' data_dict['val'] = str(val_path) if train_dir or val_dir: ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml') with open(ddp_data_path, 'w') as f: yaml.dump(data_dict, f) opt.data = ddp_data_path class WandbLogger(): def __init__(self, opt, name, run_id, data_dict, job_type='Training'): # Pre-training routine -- self.job_type = job_type self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call if isinstance(opt.resume, str): # checks resume from artifact if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): run_id, project, model_artifact_name = get_run_info(opt.resume) model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name assert wandb, 'install wandb to resume wandb runs' # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config self.wandb_run = wandb.init(id=run_id, project=project, resume='allow') opt.resume = model_artifact_name elif self.wandb: self.wandb_run = wandb.init(config=opt, resume="allow", project='YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem, name=name, job_type=job_type, id=run_id) if not wandb.run else wandb.run if self.wandb_run: if self.job_type == 'Training': if not opt.resume: wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict # Info useful for resuming from artifacts self.wandb_run.config.opt = vars(opt) self.wandb_run.config.data_dict = wandb_data_dict self.data_dict = self.setup_training(opt, data_dict) if self.job_type == 'Dataset Creation': self.data_dict = self.check_and_upload_dataset(opt) else: prefix = colorstr('wandb: ') print(f"{prefix}Install Weights & Biases for YOLOR logging with 'pip install wandb' (recommended)") def check_and_upload_dataset(self, opt): assert wandb, 'Install wandb to upload dataset' check_dataset(self.data_dict) config_path = self.log_dataset_artifact(opt.data, opt.single_cls, 'YOLOR' if opt.project == 'runs/train' else Path(opt.project).stem) print("Created dataset config file ", config_path) with open(config_path) as f: wandb_data_dict = yaml.load(f, Loader=yaml.SafeLoader) return wandb_data_dict def setup_training(self, opt, data_dict): self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants self.bbox_interval = opt.bbox_interval if isinstance(opt.resume, str): modeldir, _ = self.download_model_artifact(opt) if modeldir: self.weights = Path(modeldir) / "last.pt" config = self.wandb_run.config opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str( self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \ config.opt['hyp'] data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'), opt.artifact_alias) self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'), opt.artifact_alias) self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None if self.train_artifact_path is not None: train_path = Path(self.train_artifact_path) / 'data/images/' data_dict['train'] = str(train_path) if self.val_artifact_path is not None: val_path = Path(self.val_artifact_path) / 'data/images/' data_dict['val'] = str(val_path) self.val_table = self.val_artifact.get("val") self.map_val_table_path() if self.val_artifact is not None: self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"]) if opt.bbox_interval == -1: self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 return data_dict def download_dataset_artifact(self, path, alias): if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX): dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias) assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'" datadir = dataset_artifact.download() return datadir, dataset_artifact return None, None def download_model_artifact(self, opt): if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest") assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist' modeldir = model_artifact.download() epochs_trained = model_artifact.metadata.get('epochs_trained') total_epochs = model_artifact.metadata.get('total_epochs') assert epochs_trained < total_epochs, 'training to %g epochs is finished, nothing to resume.' % ( total_epochs) return modeldir, model_artifact return None, None def log_model(self, path, opt, epoch, fitness_score, best_model=False): model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={ 'original_url': str(path), 'epochs_trained': epoch + 1, 'save period': opt.save_period, 'project': opt.project, 'total_epochs': opt.epochs, 'fitness_score': fitness_score }) model_artifact.add_file(str(path / 'last.pt'), name='last.pt') wandb.log_artifact(model_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch), 'best' if best_model else '']) print("Saving model artifact on epoch ", epoch + 1) def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False): with open(data_file) as f: data = yaml.load(f, Loader=yaml.SafeLoader) # data dict nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names']) names = {k: v for k, v in enumerate(names)} # to index dictionary self.train_artifact = self.create_dataset_table(LoadImagesAndLabels( data['train']), names, name='train') if data.get('train') else None self.val_artifact = self.create_dataset_table(LoadImagesAndLabels( data['val']), names, name='val') if data.get('val') else None if data.get('train'): data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train') if data.get('val'): data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val') path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path data.pop('download', None) with open(path, 'w') as f: yaml.dump(data, f) if self.job_type == 'Training': # builds correct artifact pipeline graph self.wandb_run.use_artifact(self.val_artifact) self.wandb_run.use_artifact(self.train_artifact) self.val_artifact.wait() self.val_table = self.val_artifact.get('val') self.map_val_table_path() else: self.wandb_run.log_artifact(self.train_artifact) self.wandb_run.log_artifact(self.val_artifact) return path def map_val_table_path(self): self.val_table_map = {} print("Mapping dataset") for i, data in enumerate(tqdm(self.val_table.data)): self.val_table_map[data[3]] = data[0] def create_dataset_table(self, dataset, class_to_id, name='dataset'): # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging artifact = wandb.Artifact(name=name, type="dataset") img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None img_files = tqdm(dataset.img_files) if not img_files else img_files for img_file in img_files: if Path(img_file).is_dir(): artifact.add_dir(img_file, name='data/images') labels_path = 'labels'.join(dataset.path.rsplit('images', 1)) artifact.add_dir(labels_path, name='data/labels') else: artifact.add_file(img_file, name='data/images/' + Path(img_file).name) label_file = Path(img2label_paths([img_file])[0]) artifact.add_file(str(label_file), name='data/labels/' + label_file.name) if label_file.exists() else None table = wandb.Table(columns=["id", "train_image", "Classes", "name"]) class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()]) for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)): height, width = shapes[0] labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4))) * torch.Tensor([width, height, width, height]) box_data, img_classes = [], {} for cls, *xyxy in labels[:, 1:].tolist(): cls = int(cls) box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, "class_id": cls, "box_caption": "%s" % (class_to_id[cls]), "scores": {"acc": 1}, "domain": "pixel"}) img_classes[cls] = class_to_id[cls] boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes), Path(paths).name) artifact.add(table, name) return artifact def log_training_progress(self, predn, path, names): if self.val_table and self.result_table: class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()]) box_data = [] total_conf = 0 for *xyxy, conf, cls in predn.tolist(): if conf >= 0.25: box_data.append( {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, "class_id": int(cls), "box_caption": "%s %.3f" % (names[cls], conf), "scores": {"class_score": conf}, "domain": "pixel"}) total_conf = total_conf + conf boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space id = self.val_table_map[Path(path).name] self.result_table.add_data(self.current_epoch, id, wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set), total_conf / max(1, len(box_data)) ) def log(self, log_dict): if self.wandb_run: for key, value in log_dict.items(): self.log_dict[key] = value def end_epoch(self, best_result=False): if self.wandb_run: wandb.log(self.log_dict) self.log_dict = {} if self.result_artifact: train_results = wandb.JoinedTable(self.val_table, self.result_table, "id") self.result_artifact.add(train_results, 'result') wandb.log_artifact(self.result_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch), ('best' if best_result else '')]) self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"]) self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") def finish_run(self): if self.wandb_run: if self.log_dict: wandb.log(self.log_dict) wandb.run.finish()