from transformers.modeling_outputs import SequenceClassifierOutput from transformers import AlbertForSequenceClassification, AlbertTokenizer import torch import torch.nn.functional as F import numpy as np class AlbertForMultilabelSequenceClassification(AlbertForSequenceClassification): def __init__(self, config): super().__init__(config) def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.albert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = torch.nn.BCEWithLogitsLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.float().view(-1, self.num_labels)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) class Model: def __init__(self): self.device = torch.device( "cuda:0" if torch.cuda.is_available() else "cpu") self.labels = ['Accessibility', 'Non-accessibility'] self.tokenizer = AlbertTokenizer.from_pretrained( 'albert-base-v2', do_lower_case=True) classifier = AlbertForMultilabelSequenceClassification.from_pretrained( 'albert-base-v2', output_attentions=False, output_hidden_states=False, num_labels=2 ) classifier.load_state_dict( torch.load("assets/pytorch_model.bin", map_location=self.device)) classifier = classifier.eval() self.classifier = classifier.to(self.device) def predict(self, text): encoded_text = self.tokenizer.encode_plus( text, max_length=30, add_special_tokens=True, return_token_type_ids=False, padding='longest', return_attention_mask=True, return_tensors="pt", truncation=True, ) input_ids = encoded_text["input_ids"].to(self.device) attention_mask = encoded_text["attention_mask"].to(self.device) with torch.no_grad(): probabilities = self.classifier(input_ids, attention_mask) prediction = F.softmax(probabilities.logits, dim=1).cpu().numpy().flatten().max() prediction_index = np.where(F.softmax(probabilities.logits, dim=1).cpu().numpy() == prediction)[1][0] label = self.labels[prediction_index] all_predictions = F.softmax( probabilities.logits, dim=1).cpu().numpy().flatten() accessibility_prediction = all_predictions[0] nonaccessibility_prediction = all_predictions[1] return (accessibility_prediction, nonaccessibility_prediction) model = Model() # model.predict("this is an impsorvement") def get_model(): return model