File size: 5,691 Bytes
cef9e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import shutil
import os

import argparse
import torch
from torch.utils.data import DataLoader
from pytorch_lightning import seed_everything
from pytorch_lightning import seed_everything

from src.tools.training_utils import get_restore_step
from src.utilities.model.model_util import instantiate_from_config
from src.tools.training_utils import build_dataset_json_from_list
from src.tools.configuration import Configuration
from src.utilities.data.videoaudio_dataset import VideoAudioDataset, custom_collate_fn
from src.tools.download_manager import get_checkpoint_path

@torch.no_grad()
def infer(dataset_json, configs, config_yaml_path, exp_group_name, exp_name, seed=0, 
         n_cand=1, cfg_weight=3.5, ddim_steps=200, strategy='wo_ema'):
    seed_everything(seed)

    if "precision" in configs['training'].keys():
        torch.set_float32_matmul_precision(
            configs['training']["precision"]
        )  # highest, high, medium


    log_path = configs['logging']["log_directory"]

    if "dataloader_add_ons" in configs["data"].keys():
        dataloader_add_ons = configs["data"]["dataloader_add_ons"]
    else:
        dataloader_add_ons = []

    val_dataset = VideoAudioDataset(
        config=configs, 
        split='test',
        add_ons=dataloader_add_ons,
        dataset_json=dataset_json,
        load_audio=False,
        load_video=False
    )

    val_loader = DataLoader(
        val_dataset,
        batch_size=42,
        collate_fn=custom_collate_fn
    )

    config_reload_from_ckpt = configs.get("reload_from_ckpt", None)
    checkpoint_path = os.path.join(log_path, exp_group_name, exp_name, "checkpoints")
    wandb_path = os.path.join(log_path, exp_group_name, exp_name)

    os.makedirs(checkpoint_path, exist_ok=True)
    shutil.copy(config_yaml_path, wandb_path)

    if config_reload_from_ckpt is not None:
        resume_from_checkpoint = config_reload_from_ckpt
        print("Reload ckpt specified in the config file %s" % resume_from_checkpoint)
    elif len(os.listdir(checkpoint_path)) > 0:
        print("Load checkpoint from path: %s" % checkpoint_path)
        restore_step, n_step = get_restore_step(checkpoint_path)
        resume_from_checkpoint = os.path.join(checkpoint_path, restore_step)
        print("Resume from checkpoint", resume_from_checkpoint)
    else:
        raise "Please specify a pre-trained checkpoint"

    configs['model']['params']['ckpt_path'] = resume_from_checkpoint
    latent_diffusion = instantiate_from_config(configs["model"])
    latent_diffusion.set_log_dir(log_path, exp_group_name, exp_name)

    latent_diffusion.eval()
    latent_diffusion = latent_diffusion.cuda()
        
    latent_diffusion.generate_sample(
        val_loader,
        unconditional_guidance_scale=cfg_weight,
        ddim_steps=ddim_steps,
        n_gen=n_cand,
        use_ema=(strategy != 'wo_ema')
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "-c",
        "--config_yaml",
        type=str,
        required=False,
        default=None,
        help="path to config .yaml file",
    )

    parser.add_argument(
        "-m",
        "--model",
        type=str,
        default='genau-l-full-hq-data',
        required=False,
        help="Model name",
    )
    
    parser.add_argument(
        "-s",
        "--seed",
        type=int,
        default=0
    )
    
    parser.add_argument(
        "-cfg",
        "--cfg_weight",
        type=float,
        default=4.0
    )
    
    parser.add_argument(
        "--n_cand",
        type=int,
        default=3,
        help="number of candidates for clap reranking"
    )
    
    parser.add_argument(
        "--ddim_steps",
        type=int,
        default=200,
        help="number of ddim steps for sampling"
    )
    
    parser.add_argument(
        "-l",
        "--list_inference",
        type=str,
        default=None,
        required=True,
        help="The filelist that contain captions (and optionally filenames)",
    )
    parser.add_argument(
        "-ckpt",
        "--reload_from_ckpt",
        type=str,
        required=False,
        help="the checkpoint path for the model. If not provided, the most recent checkpoint from the log folder of the provided caption will be used",
    )

    
    parser.add_argument(
        "--strategy",
        type=str,
        required=False,
        default='ema',
        help="The strategy of combining weights from different checkpoint: wo_ema, avg_ckpt, or ema",
    )

    args = parser.parse_args()

    assert torch.cuda.is_available(), "CUDA is not available"

    if args.config_yaml is None:
        args.config_yaml = get_checkpoint_path(f"{args.model}_config")
    if args.reload_from_ckpt is None:
        args.reload_from_ckpt = get_checkpoint_path(args.model)
        
    config_yaml = args.config_yaml
    if args.list_inference is not None:
        dataset_json = build_dataset_json_from_list(args.list_inference)
    else:
        dataset_json = None
    exp_name = os.path.basename(config_yaml.split(".")[0])
    exp_group_name = os.path.basename(os.path.dirname(config_yaml))

    configuration = Configuration(config_yaml)
    configs = configuration.get_config()


    if args.reload_from_ckpt != None:
        configs["reload_from_ckpt"] = args.reload_from_ckpt

    infer(dataset_json=dataset_json, 
          configs=configs, 
          config_yaml_path=args.config_yaml, 
          exp_group_name=exp_group_name,
          exp_name=exp_name, 
          seed=args.seed,
          n_cand=args.n_cand,
          ddim_steps=args.ddim_steps,
          cfg_weight=args.cfg_weight,
          strategy=args.strategy)