import torch from torch import nn class AVDNetwork(nn.Module): """ Animation via Disentanglement network """ def __init__(self, num_tps, id_bottle_size=64, pose_bottle_size=64): super(AVDNetwork, self).__init__() input_size = 5*2 * num_tps self.num_tps = num_tps self.id_encoder = nn.Sequential( nn.Linear(input_size, 256), nn.BatchNorm1d(256), nn.ReLU(inplace=True), nn.Linear(256, 512), nn.BatchNorm1d(512), nn.ReLU(inplace=True), nn.Linear(512, 1024), nn.BatchNorm1d(1024), nn.ReLU(inplace=True), nn.Linear(1024, id_bottle_size) ) self.pose_encoder = nn.Sequential( nn.Linear(input_size, 256), nn.BatchNorm1d(256), nn.ReLU(inplace=True), nn.Linear(256, 512), nn.BatchNorm1d(512), nn.ReLU(inplace=True), nn.Linear(512, 1024), nn.BatchNorm1d(1024), nn.ReLU(inplace=True), nn.Linear(1024, pose_bottle_size) ) self.decoder = nn.Sequential( nn.Linear(pose_bottle_size + id_bottle_size, 1024), nn.BatchNorm1d(1024), nn.ReLU(), nn.Linear(1024, 512), nn.BatchNorm1d(512), nn.ReLU(), nn.Linear(512, 256), nn.BatchNorm1d(256), nn.ReLU(), nn.Linear(256, input_size) ) def forward(self, kp_source, kp_random): bs = kp_source['fg_kp'].shape[0] pose_emb = self.pose_encoder(kp_random['fg_kp'].view(bs, -1)) id_emb = self.id_encoder(kp_source['fg_kp'].view(bs, -1)) rec = self.decoder(torch.cat([pose_emb, id_emb], dim=1)) rec = {'fg_kp': rec.view(bs, self.num_tps*5, -1)} return rec