Spaces:
Runtime error
Runtime error
from torch import nn | |
import torch | |
import torch.nn.functional as F | |
from modules.util import AntiAliasInterpolation2d, TPS | |
from torchvision import models | |
import numpy as np | |
class Vgg19(torch.nn.Module): | |
""" | |
Vgg19 network for perceptual loss. See Sec 3.3. | |
""" | |
def __init__(self, requires_grad=False): | |
super(Vgg19, self).__init__() | |
vgg_pretrained_features = models.vgg19(pretrained=True).features | |
self.slice1 = torch.nn.Sequential() | |
self.slice2 = torch.nn.Sequential() | |
self.slice3 = torch.nn.Sequential() | |
self.slice4 = torch.nn.Sequential() | |
self.slice5 = torch.nn.Sequential() | |
for x in range(2): | |
self.slice1.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(2, 7): | |
self.slice2.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(7, 12): | |
self.slice3.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(12, 21): | |
self.slice4.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(21, 30): | |
self.slice5.add_module(str(x), vgg_pretrained_features[x]) | |
self.mean = torch.nn.Parameter(data=torch.Tensor(np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1))), | |
requires_grad=False) | |
self.std = torch.nn.Parameter(data=torch.Tensor(np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))), | |
requires_grad=False) | |
if not requires_grad: | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, X): | |
X = (X - self.mean) / self.std | |
h_relu1 = self.slice1(X) | |
h_relu2 = self.slice2(h_relu1) | |
h_relu3 = self.slice3(h_relu2) | |
h_relu4 = self.slice4(h_relu3) | |
h_relu5 = self.slice5(h_relu4) | |
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] | |
return out | |
class ImagePyramide(torch.nn.Module): | |
""" | |
Create image pyramide for computing pyramide perceptual loss. See Sec 3.3 | |
""" | |
def __init__(self, scales, num_channels): | |
super(ImagePyramide, self).__init__() | |
downs = {} | |
for scale in scales: | |
downs[str(scale).replace('.', '-')] = AntiAliasInterpolation2d(num_channels, scale) | |
self.downs = nn.ModuleDict(downs) | |
def forward(self, x): | |
out_dict = {} | |
for scale, down_module in self.downs.items(): | |
out_dict['prediction_' + str(scale).replace('-', '.')] = down_module(x) | |
return out_dict | |
def detach_kp(kp): | |
return {key: value.detach() for key, value in kp.items()} | |
class GeneratorFullModel(torch.nn.Module): | |
""" | |
Merge all generator related updates into single model for better multi-gpu usage | |
""" | |
def __init__(self, kp_extractor, bg_predictor, dense_motion_network, inpainting_network, train_params, *kwargs): | |
super(GeneratorFullModel, self).__init__() | |
self.kp_extractor = kp_extractor | |
self.inpainting_network = inpainting_network | |
self.dense_motion_network = dense_motion_network | |
self.bg_predictor = None | |
if bg_predictor: | |
self.bg_predictor = bg_predictor | |
self.bg_start = train_params['bg_start'] | |
self.train_params = train_params | |
self.scales = train_params['scales'] | |
self.pyramid = ImagePyramide(self.scales, inpainting_network.num_channels) | |
if torch.cuda.is_available(): | |
self.pyramid = self.pyramid.cuda() | |
self.loss_weights = train_params['loss_weights'] | |
self.dropout_epoch = train_params['dropout_epoch'] | |
self.dropout_maxp = train_params['dropout_maxp'] | |
self.dropout_inc_epoch = train_params['dropout_inc_epoch'] | |
self.dropout_startp =train_params['dropout_startp'] | |
if sum(self.loss_weights['perceptual']) != 0: | |
self.vgg = Vgg19() | |
if torch.cuda.is_available(): | |
self.vgg = self.vgg.cuda() | |
def forward(self, x, epoch): | |
kp_source = self.kp_extractor(x['source']) | |
kp_driving = self.kp_extractor(x['driving']) | |
bg_param = None | |
if self.bg_predictor: | |
if(epoch>=self.bg_start): | |
bg_param = self.bg_predictor(x['source'], x['driving']) | |
if(epoch>=self.dropout_epoch): | |
dropout_flag = False | |
dropout_p = 0 | |
else: | |
# dropout_p will linearly increase from dropout_startp to dropout_maxp | |
dropout_flag = True | |
dropout_p = min(epoch/self.dropout_inc_epoch * self.dropout_maxp + self.dropout_startp, self.dropout_maxp) | |
dense_motion = self.dense_motion_network(source_image=x['source'], kp_driving=kp_driving, | |
kp_source=kp_source, bg_param = bg_param, | |
dropout_flag = dropout_flag, dropout_p = dropout_p) | |
generated = self.inpainting_network(x['source'], dense_motion) | |
generated.update({'kp_source': kp_source, 'kp_driving': kp_driving}) | |
loss_values = {} | |
pyramide_real = self.pyramid(x['driving']) | |
pyramide_generated = self.pyramid(generated['prediction']) | |
# reconstruction loss | |
if sum(self.loss_weights['perceptual']) != 0: | |
value_total = 0 | |
for scale in self.scales: | |
x_vgg = self.vgg(pyramide_generated['prediction_' + str(scale)]) | |
y_vgg = self.vgg(pyramide_real['prediction_' + str(scale)]) | |
for i, weight in enumerate(self.loss_weights['perceptual']): | |
value = torch.abs(x_vgg[i] - y_vgg[i].detach()).mean() | |
value_total += self.loss_weights['perceptual'][i] * value | |
loss_values['perceptual'] = value_total | |
# equivariance loss | |
if self.loss_weights['equivariance_value'] != 0: | |
transform_random = TPS(mode = 'random', bs = x['driving'].shape[0], **self.train_params['transform_params']) | |
transform_grid = transform_random.transform_frame(x['driving']) | |
transformed_frame = F.grid_sample(x['driving'], transform_grid, padding_mode="reflection",align_corners=True) | |
transformed_kp = self.kp_extractor(transformed_frame) | |
generated['transformed_frame'] = transformed_frame | |
generated['transformed_kp'] = transformed_kp | |
warped = transform_random.warp_coordinates(transformed_kp['fg_kp']) | |
kp_d = kp_driving['fg_kp'] | |
value = torch.abs(kp_d - warped).mean() | |
loss_values['equivariance_value'] = self.loss_weights['equivariance_value'] * value | |
# warp loss | |
if self.loss_weights['warp_loss'] != 0: | |
occlusion_map = generated['occlusion_map'] | |
encode_map = self.inpainting_network.get_encode(x['driving'], occlusion_map) | |
decode_map = generated['warped_encoder_maps'] | |
value = 0 | |
for i in range(len(encode_map)): | |
value += torch.abs(encode_map[i]-decode_map[-i-1]).mean() | |
loss_values['warp_loss'] = self.loss_weights['warp_loss'] * value | |
# bg loss | |
if self.bg_predictor and epoch >= self.bg_start and self.loss_weights['bg'] != 0: | |
bg_param_reverse = self.bg_predictor(x['driving'], x['source']) | |
value = torch.matmul(bg_param, bg_param_reverse) | |
eye = torch.eye(3).view(1, 1, 3, 3).type(value.type()) | |
value = torch.abs(eye - value).mean() | |
loss_values['bg'] = self.loss_weights['bg'] * value | |
return loss_values, generated | |