import sys import os sys.path.append(os.path.dirname(__file__)) import streamlit as st import torch import numpy as np from PIL import Image import matplotlib.pyplot as plt import cv2 from torchvision import transforms import timm from tqdm import tqdm import torch.nn.functional as F from collections import Counter from scrub import unlearn import zipfile import time # Your model and other necessary functions # Assuming model, device, final_conv, fc_params, cls_names, and any other needed components are defined elsewhere # from your_model_module import model, device, final_conv, fc_params, cls_names, SaveFeatures, getCAM, tensor_2_im # Set up your model and device here # model = ... # device = ... # final_conv = ... # fc_params = ... # cls_names = ... reversed_map = { 0: 'Angelina Jolie', 1: 'Brad Pitt', 2: 'Denzel Washington', 3: 'Hugh Jackman', 4: 'Jennifer Lawrence', 5: 'Johnny Depp', 6: 'Kate Winslet', 7: 'Leonardo DiCaprio', 8: 'Megan Fox', 9: 'Natalie Portman', 10: 'Nicole Kidman', 11: 'Robert Downey Jr', 12: 'Sandra Bullock', 13: 'Scarlett Johansson', 14: 'Tom Cruise', 15: 'Tom Hanks', 16: 'Will Smith' } def extract(zip_file, extract_path): os.makedirs(extract_path, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zip_ref: zip_ref.extractall(extract_path) for root, dirs, files in os.walk(extract_path): for file in files: if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')): # Adjust file extensions as needed image_path = os.path.join(root, file) try: image = Image.open(image_path) # Process or display the image here except IOError as e: print(f"Error opening image {image_path}: {e}") model = timm.create_model("rexnet_150", pretrained = True, num_classes = 17) model.load_state_dict(torch.load('faces_best_model.pth', map_location=torch.device('cpu'))) model.eval() extract('celeb-dataset.zip', 'celeb-dataset') left_column, right_column = st.columns(2) with left_column: # Title of the app st.title("Original Model") # File uploader for images uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Open and display the image image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image.', width=300) # Perform inference st.write("Performing inference...") # Transform the image to fit model requirements preprocess = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) image_tensor = preprocess(image).unsqueeze(0) preds = [] with torch.no_grad(): for i in range(50): output = model(image_tensor) probabilities = F.softmax(output, dim=1) pred_class = torch.argmax(probabilities, dim=1) pred_label = reversed_map[pred_class.item()] preds.append(pred_label) freq = Counter(preds) top_three = freq.most_common(3) for celeb, count in top_three: st.write(f"{celeb}: {int(count)*2}%") with right_column: st.title("Unlearned Model") options = ['SSD', 'SCRUB', 'UNSIR', 'Incompetent Teacher', 'Mislabel'] # Display dropdown and store selected value selected_option = st.selectbox('Select an option:', options) uploaded_file = st.file_uploader("Upload ZIP with images for celebrity to forget.", type="zip") if uploaded_file is not None: # Call function to extract and display images extract(uploaded_file, 'forget_set') st.write("Unlearning...") #unlearn() time.sleep(10) model_s = timm.create_model("rexnet_150", pretrained = True, num_classes = 17) model_s.load_state_dict(torch.load('celeb-model-unlearned.pth', map_location=torch.device('cpu'))) model_s.eval() uploaded_file2 = st.file_uploader("Choose image...", type=["jpg", "jpeg", "png"]) image2 = Image.open(uploaded_file2) st.image(image2, caption='Uploaded Image.', width=300) # Perform inference st.write("Performing inference...") # Transform the image to fit model requirements preprocess = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) image_tensor = preprocess(image).unsqueeze(0) preds = [] with torch.no_grad(): for i in range(50): output = model_s(image_tensor) probabilities = F.softmax(output, dim=1) pred_class = torch.argmax(probabilities, dim=1) pred_label = reversed_map[pred_class.item()] preds.append(pred_label) freq = Counter(preds) top_three = freq.most_common(3) for celeb, count in top_three: st.write(f"{celeb}: {int(count)*2}%")