from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.text.all import * # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" repo_id = "mahernher/Modelo_Tweet_Topic_Single" learner = from_pretrained_fastai(repo_id) labels = ["arts_&_culture","business_&_entrepreneurs","pop_culture","daily_life","sports_&_gaming","science_&_technology"] # Definimos una función que se encarga de llevar a cabo las predicciones def predict(text): #img = PILImage.create(img) pred,pred_idx,probs = learner.predict(text) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Label(num_top_classes=3),examples=['Massive WELL DONE to BSLFC Reserves today in their Friendly winning a smashing 15-0. Goals and assists: Stacey @AbiRigler ⚽️⚽️⚽️ Sam ⚽️ Chelsea ⚽️⚽️ Rocket ⚽️ {{USERNAME}} ⚽️ Lauren ⚽️⚽️ Becky ⚽️⚽️ Doxa ⚽️ Kim ⚽️ Debs ⚽️ LEAGUE GAME NEXT WEEK {@Hampshire FA@}']).launch(share=False)