import random from typing import Dict, Tuple, List, Union import torch import torch.nn as nn import re from torch import Tensor from transformers import LlamaTokenizer from omegaconf import DictConfig from imagebind.models.image_bind import imagebind_huge, ImageBindJoiner, ModalityType, replace_joiner_vision from bubogpt.common.registry import registry from bubogpt.models.blip2 import BaseModel from bubogpt.models.modeling_llama import LlamaForCausalLM def filter_prompt(input_embeds: Dict[str, Tensor], prompt_list: List[str]) -> List[str]: if not prompt_list: return prompt_list input_modal_set = set([k.title() for k in input_embeds if input_embeds[k] is not None]) prompt_modal_sets = [set(re.findall("<([^<>]+)>", prompt)) for prompt in prompt_list] results = [prompt_list[i] for i, prompt_modal_set in enumerate(prompt_modal_sets) if prompt_modal_set == input_modal_set] return results def arrange_modalities(input_embeds: Dict[str, Tensor], prompt: str) -> List[Tensor]: prompt_modalities = re.findall("<([^<>]+)>", prompt) return [input_embeds[modality.lower()] for modality in prompt_modalities] def concat_all_embeddings(input_embeds: Dict[str, Tensor], dim: int) -> Tensor: embeds = [input_embeds[key] for key in input_embeds if input_embeds[key] is not None] return torch.cat(embeds, dim=dim) def filter_modalities(inputs): filtered_inputs = {} for k in ModalityType.__dict__.values(): if k in inputs: filtered_inputs[k] = inputs[k] return filtered_inputs @registry.register_model("mm_gpt4") class MMGPT4(BaseModel): """ ImageBind GPT-LLAMA model. """ PRETRAINED_MODEL_CONFIG_DICT = { "pretrain_vicuna": "configs/models/mmgpt4.yaml", } def __init__( self, joiner_cfg: DictConfig, q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth", freeze_imagebind=True, freeze_qformer=False, num_query_token=32, llama_model="", prompt_path="", prompt_template="", max_txt_len=128, end_sym='\n', low_resource=False, # use 8 bit and put vit in cpu device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore. with_bind_head=False, freeze_llm=True, use_blip_vision=False, proj_model="", ): super().__init__() assert not low_resource, "Low Resource Mode is Currently Unavailable." self.low_resource = low_resource import gc print('Loading ImageBind') self.multimodal_encoder = imagebind_huge(pretrained=True, freeze_imagebind=freeze_imagebind, with_head=with_bind_head, use_blip_vision=use_blip_vision) print('Loading ImageBind Done') gc.collect() print(f'Loading LLAMA from {llama_model}') self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False, use_auth_token=True) self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token self.llama_model = LlamaForCausalLM.from_pretrained(llama_model, load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", use_auth_token=True) if freeze_llm: for name, param in self.llama_model.named_parameters(): param.requires_grad = False print('Loading LLAMA Done') gc.collect() print('Loading Q-Former and Adapter/Projector') self.multimodal_joiner = ImageBindJoiner(joiner_cfg, output_dim=self.llama_model.config.hidden_size) if use_blip_vision: replace_joiner_vision(self.multimodal_joiner, q_former_model, proj_model) print('Loading Q-Former and Adapter/Projector Done') gc.collect() self.max_txt_len = max_txt_len self.end_sym = end_sym print("Preparing Prompts") self.prompt_template = prompt_template if prompt_path: with open(prompt_path, 'r') as f: raw_prompts = f.read().splitlines() self.prompt_list = [prompt_template.format(p) for p in raw_prompts] print('Load {} training prompts'.format(len(self.prompt_list))) print('Prompt Example \n{}'.format(random.choice(self.prompt_list))) else: self.prompt_list = [] print("Preparing Prompts Done") def maybe_autocast(self, dtype=torch.float16): # if on cpu, don't use autocast # if on gpu, use autocast with dtype if provided, otherwise use torch.float16 enable_autocast = self.device != torch.device("cpu") if enable_autocast: return torch.cuda.amp.autocast(dtype=dtype) else: import contextlib return contextlib.nullcontext() def encode_inputs(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]: with self.maybe_autocast(): imagebind_outputs = self.multimodal_encoder(inputs) llama_inputs = self.multimodal_joiner(imagebind_outputs) return llama_inputs def prompt_wrap(self, inputs: Dict[str, Tensor], prompt: Union[str, list]) -> Tuple[Tensor, Tensor]: if isinstance(prompt, (list, tuple)): bs = list(inputs.values())[0].shape[0] assert bs == len(prompt) return self.batch_prompt_wrap(inputs, prompt) elif isinstance(prompt, (str, type(None))): return self.single_prompt_wrap(inputs, prompt) else: raise NotImplementedError(f"Prompt type: {type(prompt)} not supported.") def single_prompt_wrap(self, inputs: Dict[str, Tensor], prompt: str) -> Tuple[Tensor, Tensor]: if not prompt: input_embeds = concat_all_embeddings(inputs, dim=1) attns_input = torch.ones(input_embeds.size()[:-1], dtype=torch.long).to(input_embeds.device) return input_embeds, attns_input input_embeds_list = arrange_modalities(inputs, prompt) batch_size = input_embeds_list[0].shape[0] prompt_slices = prompt.split('') prompt_tokens = [self.llama_tokenizer(prompt_slice, return_tensors="pt", add_special_tokens=False) .to(input_embeds_list[0].device) for prompt_slice in prompt_slices] prompt_embeds = [self.llama_model.model.embed_tokens(prompt_token.input_ids).expand(batch_size, -1, -1) for prompt_token in prompt_tokens] result_embeds = [emb for pair in zip(prompt_embeds[:-1], input_embeds_list) for emb in pair] + [prompt_embeds[-1]] wrapped_input_embeds = torch.cat(result_embeds, dim=1) wrapped_atts_input = torch.ones(wrapped_input_embeds.size()[:-1], dtype=torch.long).to(wrapped_input_embeds.device) return wrapped_input_embeds, wrapped_atts_input def batch_prompt_wrap(self, inputs: Dict[str, Tensor], prompts: List[str]) -> Tuple[Tensor, Tensor]: device = list(inputs.values())[0].device # This one only works for visual prompting prompt_slices = [prompt.split('') for prompt in prompts] slice_batch = list(zip(*prompt_slices)) prompt_tokens = [self.llama_tokenizer(slice, return_tensors="pt", add_special_tokens=False, padding="longest", truncation=True, max_length=self.max_txt_len).to(device) for slice in slice_batch] prompt_embeds = [self.llama_model.model.embed_tokens(prompt_token.input_ids) for prompt_token in prompt_tokens] prompt_masks = [prompt_token.attention_mask for prompt_token in prompt_tokens] # NOTE: assuming moalities are the same within a batch input_embeds_list = arrange_modalities(inputs, prompts[0]) input_mask_list = [torch.ones(input_embeds.size()[:-1], dtype=torch.long).to(device) for input_embeds in input_embeds_list] result_embeds = [emb for pair in zip(prompt_embeds[:-1], input_embeds_list) for emb in pair] + [prompt_embeds[-1]] result_masks = [mask for pair in zip(prompt_masks[:-1], input_mask_list) for mask in pair] + [prompt_masks[-1]] wrapped_input_embeds = torch.cat(result_embeds, dim=1) wrapped_atts_input = torch.cat(result_masks, dim=1) return wrapped_input_embeds, wrapped_atts_input def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]: # filter `inputs` as it may contain informatioins other than modalities modality_inputs = filter_modalities(inputs) embeds = self.encode_inputs(modality_inputs) filtered_prompts = filter_prompt(embeds, self.prompt_list) if "prompt" in inputs: assert isinstance(inputs["prompt"], (list, tuple)) prompt = [self.prompt_template.format(p) for p in inputs["prompt"]] elif filtered_prompts: prompt = random.choice(filtered_prompts) else: prompt = None # NOTE&TODO: add support for a list of prompts input_embs, input_atts = self.prompt_wrap(embeds, prompt) # NOTE: No modifications from the next line to the end. Except for the autocast part. self.llama_tokenizer.padding_side = "right" text = [t + self.end_sym for t in inputs["text_input"]] to_regress_tokens = self.llama_tokenizer( text, return_tensors="pt", padding="longest", truncation=True, max_length=self.max_txt_len, add_special_tokens=False ).to(input_embs.device) targets = to_regress_tokens.input_ids.masked_fill( to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100 ) empty_targets = ( torch.ones([input_atts.shape[0], input_atts.shape[1] + 1], dtype=torch.long).to(input_embs.device).fill_(-100) # plus one for bos ) targets = torch.cat([empty_targets, targets], dim=1) batch_size = input_embs.shape[0] bos = torch.ones([batch_size, 1], dtype=to_regress_tokens.input_ids.dtype, device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id bos_embeds = self.llama_model.model.embed_tokens(bos) atts_bos = input_atts[:, :1] to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids) inputs_embeds = torch.cat([bos_embeds, input_embs, to_regress_embeds], dim=1) attention_mask = torch.cat([atts_bos, input_atts, to_regress_tokens.attention_mask], dim=1) with self.maybe_autocast(): outputs = self.llama_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, return_dict=True, labels=targets, ) loss = outputs.loss return {"loss": loss} @classmethod def from_config(cls, cfg): joiner_cfg = cfg.get("joiner_cfg") q_former_model = cfg.get( "q_former_model", "checkpoints/blip2_pretrained_flant5xxl.pth", ) num_query_token = cfg.get("num_query_token") llama_model = cfg.get("llama_model") freeze_imagebind = cfg.get("freeze_imagebind", True) freeze_qformer = cfg.get("freeze_qformer", True) low_resource = cfg.get("low_resource", False) device_8bit = cfg.get("device_8bit", 0) prompt_path = cfg.get("prompt_path", "") prompt_template = cfg.get("prompt_template", "") max_txt_len = cfg.get("max_txt_len", 128) end_sym = cfg.get("end_sym", '\n') with_bind_head = cfg.get("with_bind_head", False) freeze_llm = cfg.get("freeze_llm", True) use_blip_vision = cfg.get("use_blip_vision", False) proj_model = cfg.get("proj_model", "") model = cls( joiner_cfg=joiner_cfg, q_former_model=q_former_model, freeze_imagebind=freeze_imagebind, freeze_qformer=freeze_qformer, num_query_token=num_query_token, llama_model=llama_model, prompt_path=prompt_path, prompt_template=prompt_template, max_txt_len=max_txt_len, end_sym=end_sym, low_resource=low_resource, device_8bit=device_8bit, with_bind_head=with_bind_head, freeze_llm=freeze_llm, use_blip_vision=use_blip_vision, proj_model=proj_model, ) ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4 if ckpt_path: if isinstance(ckpt_path, str): ckpt_path = [ckpt_path] for cur_ckpt_path in ckpt_path: print("Load ImageBind-LLM Checkpoint: {}".format(cur_ckpt_path)) ckpt = torch.load(cur_ckpt_path, map_location="cpu") msg = model.load_state_dict(ckpt['model'], strict=False) return model