""" Code from https://github.com/hassony2/torch_videovision """ import numbers import random import numpy as np import PIL from skimage.transform import resize, rotate from np.pad import pad import torchvision import warnings from skimage import img_as_ubyte, img_as_float def crop_clip(clip, min_h, min_w, h, w): if isinstance(clip[0], np.ndarray): cropped = [img[min_h:min_h + h, min_w:min_w + w, :] for img in clip] elif isinstance(clip[0], PIL.Image.Image): cropped = [ img.crop((min_w, min_h, min_w + w, min_h + h)) for img in clip ] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return cropped def pad_clip(clip, h, w): im_h, im_w = clip[0].shape[:2] pad_h = (0, 0) if h < im_h else ((h - im_h) // 2, (h - im_h + 1) // 2) pad_w = (0, 0) if w < im_w else ((w - im_w) // 2, (w - im_w + 1) // 2) return pad(clip, ((0, 0), pad_h, pad_w, (0, 0)), mode='edge') def resize_clip(clip, size, interpolation='bilinear'): if isinstance(clip[0], np.ndarray): if isinstance(size, numbers.Number): im_h, im_w, im_c = clip[0].shape # Min spatial dim already matches minimal size if (im_w <= im_h and im_w == size) or (im_h <= im_w and im_h == size): return clip new_h, new_w = get_resize_sizes(im_h, im_w, size) size = (new_w, new_h) else: size = size[1], size[0] scaled = [ resize(img, size, order=1 if interpolation == 'bilinear' else 0, preserve_range=True, mode='constant', anti_aliasing=True) for img in clip ] elif isinstance(clip[0], PIL.Image.Image): if isinstance(size, numbers.Number): im_w, im_h = clip[0].size # Min spatial dim already matches minimal size if (im_w <= im_h and im_w == size) or (im_h <= im_w and im_h == size): return clip new_h, new_w = get_resize_sizes(im_h, im_w, size) size = (new_w, new_h) else: size = size[1], size[0] if interpolation == 'bilinear': pil_inter = PIL.Image.NEAREST else: pil_inter = PIL.Image.BILINEAR scaled = [img.resize(size, pil_inter) for img in clip] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return scaled def get_resize_sizes(im_h, im_w, size): if im_w < im_h: ow = size oh = int(size * im_h / im_w) else: oh = size ow = int(size * im_w / im_h) return oh, ow class RandomFlip(object): def __init__(self, time_flip=False, horizontal_flip=False): self.time_flip = time_flip self.horizontal_flip = horizontal_flip def __call__(self, clip): if random.random() < 0.5 and self.time_flip: return clip[::-1] if random.random() < 0.5 and self.horizontal_flip: return [np.fliplr(img) for img in clip] return clip class RandomResize(object): """Resizes a list of (H x W x C) numpy.ndarray to the final size The larger the original image is, the more times it takes to interpolate Args: interpolation (str): Can be one of 'nearest', 'bilinear' defaults to nearest size (tuple): (widht, height) """ def __init__(self, ratio=(3. / 4., 4. / 3.), interpolation='nearest'): self.ratio = ratio self.interpolation = interpolation def __call__(self, clip): scaling_factor = random.uniform(self.ratio[0], self.ratio[1]) if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size new_w = int(im_w * scaling_factor) new_h = int(im_h * scaling_factor) new_size = (new_w, new_h) resized = resize_clip( clip, new_size, interpolation=self.interpolation) return resized class RandomCrop(object): """Extract random crop at the same location for a list of videos Args: size (sequence or int): Desired output size for the crop in format (h, w) """ def __init__(self, size): if isinstance(size, numbers.Number): size = (size, size) self.size = size def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of videos to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of videos """ h, w = self.size if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) clip = pad_clip(clip, h, w) im_h, im_w = clip.shape[1:3] x1 = 0 if h == im_h else random.randint(0, im_w - w) y1 = 0 if w == im_w else random.randint(0, im_h - h) cropped = crop_clip(clip, y1, x1, h, w) return cropped class RandomRotation(object): """Rotate entire clip randomly by a random angle within given bounds Args: degrees (sequence or int): Range of degrees to select from If degrees is a number instead of sequence like (min, max), the range of degrees, will be (-degrees, +degrees). """ def __init__(self, degrees): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError('If degrees is a single number,' 'must be positive') degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError('If degrees is a sequence,' 'it must be of len 2.') self.degrees = degrees def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of videos to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of videos """ angle = random.uniform(self.degrees[0], self.degrees[1]) if isinstance(clip[0], np.ndarray): rotated = [rotate(image=img, angle=angle, preserve_range=True) for img in clip] elif isinstance(clip[0], PIL.Image.Image): rotated = [img.rotate(angle) for img in clip] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return rotated class ColorJitter(object): """Randomly change the brightness, contrast and saturation and hue of the clip Args: brightness (float): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. contrast (float): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. saturation (float): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. hue(float): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue]. Should be >=0 and <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue def get_params(self, brightness, contrast, saturation, hue): if brightness > 0: brightness_factor = random.uniform( max(0, 1 - brightness), 1 + brightness) else: brightness_factor = None if contrast > 0: contrast_factor = random.uniform( max(0, 1 - contrast), 1 + contrast) else: contrast_factor = None if saturation > 0: saturation_factor = random.uniform( max(0, 1 - saturation), 1 + saturation) else: saturation_factor = None if hue > 0: hue_factor = random.uniform(-hue, hue) else: hue_factor = None return brightness_factor, contrast_factor, saturation_factor, hue_factor def __call__(self, clip): """ Args: clip (list): list of PIL.Image Returns: list PIL.Image : list of transformed PIL.Image """ if isinstance(clip[0], np.ndarray): brightness, contrast, saturation, hue = self.get_params( self.brightness, self.contrast, self.saturation, self.hue) # Create img transform function sequence img_transforms = [] if brightness is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness)) if saturation is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation)) if hue is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue)) if contrast is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast)) random.shuffle(img_transforms) img_transforms = [img_as_ubyte, torchvision.transforms.ToPILImage()] + img_transforms + [np.array, img_as_float] with warnings.catch_warnings(): warnings.simplefilter("ignore") jittered_clip = [] for img in clip: jittered_img = img for func in img_transforms: jittered_img = func(jittered_img) jittered_clip.append(jittered_img.astype('float32')) elif isinstance(clip[0], PIL.Image.Image): brightness, contrast, saturation, hue = self.get_params( self.brightness, self.contrast, self.saturation, self.hue) # Create img transform function sequence img_transforms = [] if brightness is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness)) if saturation is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation)) if hue is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue)) if contrast is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast)) random.shuffle(img_transforms) # Apply to all videos jittered_clip = [] for img in clip: for func in img_transforms: jittered_img = func(img) jittered_clip.append(jittered_img) else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return jittered_clip class AllAugmentationTransform: def __init__(self, resize_param=None, rotation_param=None, flip_param=None, crop_param=None, jitter_param=None): self.transforms = [] if flip_param is not None: self.transforms.append(RandomFlip(**flip_param)) if rotation_param is not None: self.transforms.append(RandomRotation(**rotation_param)) if resize_param is not None: self.transforms.append(RandomResize(**resize_param)) if crop_param is not None: self.transforms.append(RandomCrop(**crop_param)) if jitter_param is not None: self.transforms.append(ColorJitter(**jitter_param)) def __call__(self, clip): for t in self.transforms: clip = t(clip) return clip