import torch.nn.functional as F # Seed SEED = 1 # Dataset CLASSES = ( "Airplane", "Automobile", "Bird", "Cat", "Deer", "Dog", "Frog", "Horse", "Ship", "Truck", ) SHUFFLE = True DATA_DIR = "../data" NUM_WORKERS = 4 PIN_MEMORY = True # Training Hyperparameters CRITERION = F.cross_entropy INPUT_SIZE = (3, 32, 32) NUM_CLASSES = 10 LEARNING_RATE = 0.001 WEIGHT_DECAY = 1e-4 BATCH_SIZE = 512 NUM_EPOCHS = 24 DROPOUT_PERCENTAGE = 0.05 LAYER_NORM = "bn" # Batch Normalization # OPTIMIZER & SCHEDULER LRFINDER_END_LR = 0.1 LRFINDER_NUM_ITERATIONS = 50 LRFINDER_STEP_MODE = "exp" OCLR_DIV_FACTOR = 100 OCLR_FINAL_DIV_FACTOR = 100 OCLR_THREE_PHASE = False OCLR_ANNEAL_STRATEGY = "linear" # Compute Related ACCELERATOR = "cpu" PRECISION = 32 # Store TRAINING_STAT_STORE = "Store/training_stats.csv" MODEL_SAVE_PATH = "Store/model.pth" PRED_STORE_PATH = "Store/pred_store.pth" EXAMPLE_IMG_PATH = "Store/examples/" # Visualization NORM_CONF_MAT = True