import torch.nn as nn import torch import torch.nn.functional as F import numpy as np import math class SelfAttention(nn.Module): def __init__(self, ip_dim, att_dim): super(SelfAttention, self).__init__() # Note, does not encode position information (absolute or realtive) self.temperature = 1.0 self.att_dim = att_dim self.key_fun = nn.Linear(ip_dim, att_dim) self.val_fun = nn.Linear(ip_dim, att_dim) self.que_fun = nn.Linear(ip_dim, att_dim) self.pro_fun = nn.Linear(att_dim, ip_dim) def forward(self, x): x = x.squeeze(2).permute(0,2,1) kk = torch.matmul(x, self.key_fun.weight.T) + self.key_fun.bias.unsqueeze(0).unsqueeze(0) qq = torch.matmul(x, self.que_fun.weight.T) + self.que_fun.bias.unsqueeze(0).unsqueeze(0) vv = torch.matmul(x, self.val_fun.weight.T) + self.val_fun.bias.unsqueeze(0).unsqueeze(0) kk_qq = torch.bmm(kk, qq.permute(0,2,1)) / (self.temperature*self.att_dim) att_weights = F.softmax(kk_qq, 1) # each col of each attention matrix sums to 1 att = torch.bmm(vv.permute(0,2,1), att_weights) op = torch.matmul(att.permute(0,2,1), self.pro_fun.weight.T) + self.pro_fun.bias.unsqueeze(0).unsqueeze(0) op = op.permute(0,2,1).unsqueeze(2) return op class ConvBlockDownCoordF(nn.Module): def __init__(self, in_chn, out_chn, ip_height, k_size=3, pad_size=1, stride=1): super(ConvBlockDownCoordF, self).__init__() self.coords = nn.Parameter(torch.linspace(-1, 1, ip_height)[None, None, ..., None], requires_grad=False) self.conv = nn.Conv2d(in_chn+1, out_chn, kernel_size=k_size, padding=pad_size, stride=stride) self.conv_bn = nn.BatchNorm2d(out_chn) def forward(self, x): freq_info = self.coords.repeat(x.shape[0],1,1,x.shape[3]) x = torch.cat((x, freq_info), 1) x = F.max_pool2d(self.conv(x), 2, 2) x = F.relu(self.conv_bn(x), inplace=True) return x class ConvBlockDownStandard(nn.Module): def __init__(self, in_chn, out_chn, ip_height=None, k_size=3, pad_size=1, stride=1): super(ConvBlockDownStandard, self).__init__() self.conv = nn.Conv2d(in_chn, out_chn, kernel_size=k_size, padding=pad_size, stride=stride) self.conv_bn = nn.BatchNorm2d(out_chn) def forward(self, x): x = F.max_pool2d(self.conv(x), 2, 2) x = F.relu(self.conv_bn(x), inplace=True) return x class ConvBlockUpF(nn.Module): def __init__(self, in_chn, out_chn, ip_height, k_size=3, pad_size=1, up_mode='bilinear', up_scale=(2,2)): super(ConvBlockUpF, self).__init__() self.up_scale = up_scale self.up_mode = up_mode self.coords = nn.Parameter(torch.linspace(-1, 1, ip_height*up_scale[0])[None, None, ..., None], requires_grad=False) self.conv = nn.Conv2d(in_chn+1, out_chn, kernel_size=k_size, padding=pad_size) self.conv_bn = nn.BatchNorm2d(out_chn) def forward(self, x): op = F.interpolate(x, size=(x.shape[-2]*self.up_scale[0], x.shape[-1]*self.up_scale[1]), mode=self.up_mode, align_corners=False) freq_info = self.coords.repeat(op.shape[0],1,1,op.shape[3]) op = torch.cat((op, freq_info), 1) op = self.conv(op) op = F.relu(self.conv_bn(op), inplace=True) return op class ConvBlockUpStandard(nn.Module): def __init__(self, in_chn, out_chn, ip_height=None, k_size=3, pad_size=1, up_mode='bilinear', up_scale=(2,2)): super(ConvBlockUpStandard, self).__init__() self.up_scale = up_scale self.up_mode = up_mode self.conv = nn.Conv2d(in_chn, out_chn, kernel_size=k_size, padding=pad_size) self.conv_bn = nn.BatchNorm2d(out_chn) def forward(self, x): op = F.interpolate(x, size=(x.shape[-2]*self.up_scale[0], x.shape[-1]*self.up_scale[1]), mode=self.up_mode, align_corners=False) op = self.conv(op) op = F.relu(self.conv_bn(op), inplace=True) return op