#pragma once #include "diffvg.h" #include "edge_query.h" #include "shape.h" #include "vector.h" DEVICE inline bool within_distance(const Circle &circle, const Vector2f &pt, float r) { auto dist_to_center = distance(circle.center, pt); if (fabs(dist_to_center - circle.radius) < r) { return true; } return false; } DEVICE inline bool within_distance(const Path &path, const BVHNode *bvh_nodes, const Vector2f &pt, float r) { auto num_segments = path.num_base_points; constexpr auto max_bvh_size = 128; int bvh_stack[max_bvh_size]; auto stack_size = 0; bvh_stack[stack_size++] = 2 * num_segments - 2; while (stack_size > 0) { const BVHNode &node = bvh_nodes[bvh_stack[--stack_size]]; if (node.child1 < 0) { // leaf auto base_point_id = node.child0; auto point_id = - node.child1 - 1; assert(base_point_id < num_segments); assert(point_id < path.num_points); if (path.num_control_points[base_point_id] == 0) { // Straight line auto i0 = point_id; auto i1 = (point_id + 1) % path.num_points; auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]}; auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]}; // project pt to line auto t = dot(pt - p0, p1 - p0) / dot(p1 - p0, p1 - p0); auto r0 = r; auto r1 = r; // override radius if path has thickness if (path.thickness != nullptr) { r0 = path.thickness[i0]; r1 = path.thickness[i1]; } if (t < 0) { if (distance_squared(p0, pt) < r0 * r0) { return true; } } else if (t > 1) { if (distance_squared(p1, pt) < r1 * r1) { return true; } } else { auto r = r0 + t * (r1 - r0); if (distance_squared(p0 + t * (p1 - p0), pt) < r * r) { return true; } } } else if (path.num_control_points[base_point_id] == 1) { // Quadratic Bezier curve auto i0 = point_id; auto i1 = point_id + 1; auto i2 = (point_id + 2) % path.num_points; auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]}; auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]}; auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]}; if (path.use_distance_approx) { auto cp = quadratic_closest_pt_approx(p0, p1, p2, pt); return distance_squared(cp, pt) < r * r; } auto eval = [&](float t) -> Vector2f { auto tt = 1 - t; return (tt*tt)*p0 + (2*tt*t)*p1 + (t*t)*p2; }; auto r0 = r; auto r1 = r; auto r2 = r; // override radius if path has thickness if (path.thickness != nullptr) { r0 = path.thickness[i0]; r1 = path.thickness[i1]; r2 = path.thickness[i2]; } if (distance_squared(eval(0), pt) < r0 * r0) { return true; } if (distance_squared(eval(1), pt) < r2 * r2) { return true; } // The curve is (1-t)^2p0 + 2(1-t)tp1 + t^2p2 // = (p0-2p1+p2)t^2+(-2p0+2p1)t+p0 = q // Want to solve (q - pt) dot q' = 0 // q' = (p0-2p1+p2)t + (-p0+p1) // Expanding (p0-2p1+p2)^2 t^3 + // 3(p0-2p1+p2)(-p0+p1) t^2 + // (2(-p0+p1)^2+(p0-2p1+p2)(p0-pt))t + // (-p0+p1)(p0-pt) = 0 auto A = sum((p0-2*p1+p2)*(p0-2*p1+p2)); auto B = sum(3*(p0-2*p1+p2)*(-p0+p1)); auto C = sum(2*(-p0+p1)*(-p0+p1)+(p0-2*p1+p2)*(p0-pt)); auto D = sum((-p0+p1)*(p0-pt)); float t[3]; int num_sol = solve_cubic(A, B, C, D, t); for (int j = 0; j < num_sol; j++) { if (t[j] >= 0 && t[j] <= 1) { auto tt = 1 - t[j]; auto r = (tt*tt)*r0 + (2*tt*t[j])*r1 + (t[j]*t[j])*r2; auto p = eval(t[j]); if (distance_squared(p, pt) < r*r) { return true; } } } } else if (path.num_control_points[base_point_id] == 2) { // Cubic Bezier curve auto i0 = point_id; auto i1 = point_id + 1; auto i2 = point_id + 2; auto i3 = (point_id + 3) % path.num_points; auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]}; auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]}; auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]}; auto p3 = Vector2f{path.points[2 * i3], path.points[2 * i3 + 1]}; auto eval = [&](float t) -> Vector2f { auto tt = 1 - t; return (tt*tt*tt)*p0 + (3*tt*tt*t)*p1 + (3*tt*t*t)*p2 + (t*t*t)*p3; }; auto r0 = r; auto r1 = r; auto r2 = r; auto r3 = r; // override radius if path has thickness if (path.thickness != nullptr) { r0 = path.thickness[i0]; r1 = path.thickness[i1]; r2 = path.thickness[i2]; r3 = path.thickness[i3]; } if (distance_squared(eval(0), pt) < r0*r0) { return true; } if (distance_squared(eval(1), pt) < r3*r3) { return true; } // The curve is (1 - t)^3 p0 + 3 * (1 - t)^2 t p1 + 3 * (1 - t) t^2 p2 + t^3 p3 // = (-p0+3p1-3p2+p3) t^3 + (3p0-6p1+3p2) t^2 + (-3p0+3p1) t + p0 // Want to solve (q - pt) dot q' = 0 // q' = 3*(-p0+3p1-3p2+p3)t^2 + 2*(3p0-6p1+3p2)t + (-3p0+3p1) // Expanding // 3*(-p0+3p1-3p2+p3)^2 t^5 // 5*(-p0+3p1-3p2+p3)(3p0-6p1+3p2) t^4 // 4*(-p0+3p1-3p2+p3)(-3p0+3p1) + 2*(3p0-6p1+3p2)^2 t^3 // 3*(3p0-6p1+3p2)(-3p0+3p1) + 3*(-p0+3p1-3p2+p3)(p0-pt) t^2 // (-3p0+3p1)^2+2(p0-pt)(3p0-6p1+3p2) t // (p0-pt)(-3p0+3p1) double A = 3*sum((-p0+3*p1-3*p2+p3)*(-p0+3*p1-3*p2+p3)); double B = 5*sum((-p0+3*p1-3*p2+p3)*(3*p0-6*p1+3*p2)); double C = 4*sum((-p0+3*p1-3*p2+p3)*(-3*p0+3*p1)) + 2*sum((3*p0-6*p1+3*p2)*(3*p0-6*p1+3*p2)); double D = 3*(sum((3*p0-6*p1+3*p2)*(-3*p0+3*p1)) + sum((-p0+3*p1-3*p2+p3)*(p0-pt))); double E = sum((-3*p0+3*p1)*(-3*p0+3*p1)) + 2*sum((p0-pt)*(3*p0-6*p1+3*p2)); double F = sum((p0-pt)*(-3*p0+3*p1)); // normalize the polynomial B /= A; C /= A; D /= A; E /= A; F /= A; // Isolator Polynomials: // https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.2233&rep=rep1&type=pdf // x/5 + B/25 // /----------------------------------------------------- // 5x^4 + 4B x^3 + 3C x^2 + 2D x + E / x^5 + B x^4 + C x^3 + D x^2 + E x + F // x^5 + 4B/5 x^4 + 3C/5 x^3 + 2D/5 x^2 + E/5 x // ---------------------------------------------------- // B/5 x^4 + 2C/5 x^3 + 3D/5 x^2 + 4E/5 x + F // B/5 x^4 + 4B^2/25 x^3 + 3BC/25 x^2 + 2BD/25 x + BE/25 // ---------------------------------------------------- // (2C/5 - 4B^2/25)x^3 + (3D/5-3BC/25)x^2 + (4E/5-2BD/25) + (F-BE/25) auto p1A = ((2 / 5.f) * C - (4 / 25.f) * B * B); auto p1B = ((3 / 5.f) * D - (3 / 25.f) * B * C); auto p1C = ((4 / 5.f) * E - (2 / 25.f) * B * D); auto p1D = F - B * E / 25.f; // auto q1A = 1 / 5.f; // auto q1B = B / 25.f; // x/5 + B/25 = 0 // x = -B/5 auto q_root = -B/5.f; double p_roots[3]; int num_sol = solve_cubic(p1A, p1B, p1C, p1D, p_roots); float intervals[4]; if (q_root >= 0 && q_root <= 1) { intervals[0] = q_root; } for (int j = 0; j < num_sol; j++) { intervals[j + 1] = p_roots[j]; } auto num_intervals = 1 + num_sol; // sort intervals for (int j = 1; j < num_intervals; j++) { for (int k = j; k > 0 && intervals[k - 1] > intervals[k]; k--) { auto tmp = intervals[k]; intervals[k] = intervals[k - 1]; intervals[k - 1] = tmp; } } auto eval_polynomial = [&] (double t) { return t*t*t*t*t+ B*t*t*t*t+ C*t*t*t+ D*t*t+ E*t+ F; }; auto eval_polynomial_deriv = [&] (double t) { return 5*t*t*t*t+ 4*B*t*t*t+ 3*C*t*t+ 2*D*t+ E; }; auto lower_bound = 0.f; for (int j = 0; j < num_intervals + 1; j++) { if (j < num_intervals && intervals[j] < 0.f) { continue; } auto upper_bound = j < num_intervals ? min(intervals[j], 1.f) : 1.f; auto lb = lower_bound; auto ub = upper_bound; auto lb_eval = eval_polynomial(lb); auto ub_eval = eval_polynomial(ub); if (lb_eval * ub_eval > 0) { // Doesn't have root continue; } if (lb_eval > ub_eval) { swap_(lb, ub); } auto t = 0.5f * (lb + ub); for (int it = 0; it < 20; it++) { if (!(t >= lb && t <= ub)) { t = 0.5f * (lb + ub); } auto value = eval_polynomial(t); if (fabs(value) < 1e-5f || it == 19) { break; } // The derivative may not be entirely accurate, // but the bisection is going to handle this if (value > 0.f) { ub = t; } else { lb = t; } auto derivative = eval_polynomial_deriv(t); t -= value / derivative; } auto tt = 1 - t; auto r = (tt*tt*tt)*r0 + (3*tt*tt*t)*r1 + (3*tt*t*t)*r2 + (t*t*t)*r3; if (distance_squared(eval(t), pt) < r * r) { return true; } if (upper_bound >= 1.f) { break; } lower_bound = upper_bound; } } else { assert(false); } } else { assert(node.child0 >= 0 && node.child1 >= 0); const AABB &b0 = bvh_nodes[node.child0].box; if (within_distance(b0, pt, bvh_nodes[node.child0].max_radius)) { bvh_stack[stack_size++] = node.child0; } const AABB &b1 = bvh_nodes[node.child1].box; if (within_distance(b1, pt, bvh_nodes[node.child1].max_radius)) { bvh_stack[stack_size++] = node.child1; } assert(stack_size <= max_bvh_size); } } return false; } DEVICE inline int within_distance(const Rect &rect, const Vector2f &pt, float r) { auto test = [&](const Vector2f &p0, const Vector2f &p1) { // project pt to line auto t = dot(pt - p0, p1 - p0) / dot(p1 - p0, p1 - p0); if (t < 0) { if (distance_squared(p0, pt) < r * r) { return true; } } else if (t > 1) { if (distance_squared(p1, pt) < r * r) { return true; } } else { if (distance_squared(p0 + t * (p1 - p0), pt) < r * r) { return true; } } return false; }; auto left_top = rect.p_min; auto right_top = Vector2f{rect.p_max.x, rect.p_min.y}; auto left_bottom = Vector2f{rect.p_min.x, rect.p_max.y}; auto right_bottom = rect.p_max; // left if (test(left_top, left_bottom)) { return true; } // top if (test(left_top, right_top)) { return true; } // right if (test(right_top, right_bottom)) { return true; } // bottom if (test(left_bottom, right_bottom)) { return true; } return false; } DEVICE inline bool within_distance(const Shape &shape, const BVHNode *bvh_nodes, const Vector2f &pt, float r) { switch (shape.type) { case ShapeType::Circle: return within_distance(*(const Circle *)shape.ptr, pt, r); case ShapeType::Ellipse: // https://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf assert(false); return false; case ShapeType::Path: return within_distance(*(const Path *)shape.ptr, bvh_nodes, pt, r); case ShapeType::Rect: return within_distance(*(const Rect *)shape.ptr, pt, r); } assert(false); return false; } DEVICE inline bool within_distance(const SceneData &scene, int shape_group_id, const Vector2f &pt) { const ShapeGroup &shape_group = scene.shape_groups[shape_group_id]; // pt is in canvas space, transform it to shape's local space auto local_pt = xform_pt(shape_group.canvas_to_shape, pt); constexpr auto max_bvh_stack_size = 64; int bvh_stack[max_bvh_stack_size]; auto stack_size = 0; bvh_stack[stack_size++] = 2 * shape_group.num_shapes - 2; const auto &bvh_nodes = scene.shape_groups_bvh_nodes[shape_group_id]; while (stack_size > 0) { const BVHNode &node = bvh_nodes[bvh_stack[--stack_size]]; if (node.child1 < 0) { // leaf auto shape_id = node.child0; const auto &shape = scene.shapes[shape_id]; if (within_distance(shape, scene.path_bvhs[shape_id], local_pt, shape.stroke_width)) { return true; } } else { assert(node.child0 >= 0 && node.child1 >= 0); const AABB &b0 = bvh_nodes[node.child0].box; if (inside(b0, local_pt, bvh_nodes[node.child0].max_radius)) { bvh_stack[stack_size++] = node.child0; } const AABB &b1 = bvh_nodes[node.child1].box; if (inside(b1, local_pt, bvh_nodes[node.child1].max_radius)) { bvh_stack[stack_size++] = node.child1; } assert(stack_size <= max_bvh_stack_size); } } return false; } DEVICE inline bool within_distance(const SceneData &scene, int shape_group_id, const Vector2f &pt, EdgeQuery *edge_query) { if (edge_query == nullptr || shape_group_id != edge_query->shape_group_id) { // Specialized version return within_distance(scene, shape_group_id, pt); } const ShapeGroup &shape_group = scene.shape_groups[shape_group_id]; // pt is in canvas space, transform it to shape's local space auto local_pt = xform_pt(shape_group.canvas_to_shape, pt); constexpr auto max_bvh_stack_size = 64; int bvh_stack[max_bvh_stack_size]; auto stack_size = 0; bvh_stack[stack_size++] = 2 * shape_group.num_shapes - 2; const auto &bvh_nodes = scene.shape_groups_bvh_nodes[shape_group_id]; auto ret = false; while (stack_size > 0) { const BVHNode &node = bvh_nodes[bvh_stack[--stack_size]]; if (node.child1 < 0) { // leaf auto shape_id = node.child0; const auto &shape = scene.shapes[shape_id]; if (within_distance(shape, scene.path_bvhs[shape_id], local_pt, shape.stroke_width)) { ret = true; if (shape_id == edge_query->shape_id) { edge_query->hit = true; } } } else { assert(node.child0 >= 0 && node.child1 >= 0); const AABB &b0 = bvh_nodes[node.child0].box; if (inside(b0, local_pt, bvh_nodes[node.child0].max_radius)) { bvh_stack[stack_size++] = node.child0; } const AABB &b1 = bvh_nodes[node.child1].box; if (inside(b1, local_pt, bvh_nodes[node.child1].max_radius)) { bvh_stack[stack_size++] = node.child1; } assert(stack_size <= max_bvh_stack_size); } } return ret; }