#pragma once #include "diffvg.h" #include "edge_query.h" #include "scene.h" #include "shape.h" #include "solve.h" #include "vector.h" #include struct ClosestPointPathInfo { int base_point_id; int point_id; float t_root; }; DEVICE inline bool closest_point(const Circle &circle, const Vector2f &pt, Vector2f *result) { *result = circle.center + circle.radius * normalize(pt - circle.center); return false; } DEVICE inline bool closest_point(const Path &path, const BVHNode *bvh_nodes, const Vector2f &pt, float max_radius, ClosestPointPathInfo *path_info, Vector2f *result) { auto min_dist = max_radius; auto ret_pt = Vector2f{0, 0}; auto found = false; auto num_segments = path.num_base_points; constexpr auto max_bvh_size = 128; int bvh_stack[max_bvh_size]; auto stack_size = 0; bvh_stack[stack_size++] = 2 * num_segments - 2; while (stack_size > 0) { const BVHNode &node = bvh_nodes[bvh_stack[--stack_size]]; if (node.child1 < 0) { // leaf auto base_point_id = node.child0; auto point_id = - node.child1 - 1; assert(base_point_id < num_segments); assert(point_id < path.num_points); auto dist = 0.f; auto closest_pt = Vector2f{0, 0}; auto t_root = 0.f; if (path.num_control_points[base_point_id] == 0) { // Straight line auto i0 = point_id; auto i1 = (point_id + 1) % path.num_points; auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]}; auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]}; // project pt to line auto t = dot(pt - p0, p1 - p0) / dot(p1 - p0, p1 - p0); if (t < 0) { dist = distance(p0, pt); closest_pt = p0; t_root = 0; } else if (t > 1) { dist = distance(p1, pt); closest_pt = p1; t_root = 1; } else { dist = distance(p0 + t * (p1 - p0), pt); closest_pt = p0 + t * (p1 - p0); t_root = t; } } else if (path.num_control_points[base_point_id] == 1) { // Quadratic Bezier curve auto i0 = point_id; auto i1 = point_id + 1; auto i2 = (point_id + 2) % path.num_points; auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]}; auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]}; auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]}; if (path.use_distance_approx) { closest_pt = quadratic_closest_pt_approx(p0, p1, p2, pt, &t_root); dist = distance(closest_pt, pt); } else { auto eval = [&](float t) -> Vector2f { auto tt = 1 - t; return (tt*tt)*p0 + (2*tt*t)*p1 + (t*t)*p2; }; auto pt0 = eval(0); auto pt1 = eval(1); auto dist0 = distance(pt0, pt); auto dist1 = distance(pt1, pt); { dist = dist0; closest_pt = pt0; t_root = 0; } if (dist1 < dist) { dist = dist1; closest_pt = pt1; t_root = 1; } // The curve is (1-t)^2p0 + 2(1-t)tp1 + t^2p2 // = (p0-2p1+p2)t^2+(-2p0+2p1)t+p0 = q // Want to solve (q - pt) dot q' = 0 // q' = (p0-2p1+p2)t + (-p0+p1) // Expanding (p0-2p1+p2)^2 t^3 + // 3(p0-2p1+p2)(-p0+p1) t^2 + // (2(-p0+p1)^2+(p0-2p1+p2)(p0-pt))t + // (-p0+p1)(p0-pt) = 0 auto A = sum((p0-2*p1+p2)*(p0-2*p1+p2)); auto B = sum(3*(p0-2*p1+p2)*(-p0+p1)); auto C = sum(2*(-p0+p1)*(-p0+p1)+(p0-2*p1+p2)*(p0-pt)); auto D = sum((-p0+p1)*(p0-pt)); float t[3]; int num_sol = solve_cubic(A, B, C, D, t); for (int j = 0; j < num_sol; j++) { if (t[j] >= 0 && t[j] <= 1) { auto p = eval(t[j]); auto distp = distance(p, pt); if (distp < dist) { dist = distp; closest_pt = p; t_root = t[j]; } } } } } else if (path.num_control_points[base_point_id] == 2) { // Cubic Bezier curve auto i0 = point_id; auto i1 = point_id + 1; auto i2 = point_id + 2; auto i3 = (point_id + 3) % path.num_points; auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]}; auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]}; auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]}; auto p3 = Vector2f{path.points[2 * i3], path.points[2 * i3 + 1]}; auto eval = [&](float t) -> Vector2f { auto tt = 1 - t; return (tt*tt*tt)*p0 + (3*tt*tt*t)*p1 + (3*tt*t*t)*p2 + (t*t*t)*p3; }; auto pt0 = eval(0); auto pt1 = eval(1); auto dist0 = distance(pt0, pt); auto dist1 = distance(pt1, pt); { dist = dist0; closest_pt = pt0; t_root = 0; } if (dist1 < dist) { dist = dist1; closest_pt = pt1; t_root = 1; } // The curve is (1 - t)^3 p0 + 3 * (1 - t)^2 t p1 + 3 * (1 - t) t^2 p2 + t^3 p3 // = (-p0+3p1-3p2+p3) t^3 + (3p0-6p1+3p2) t^2 + (-3p0+3p1) t + p0 // Want to solve (q - pt) dot q' = 0 // q' = 3*(-p0+3p1-3p2+p3)t^2 + 2*(3p0-6p1+3p2)t + (-3p0+3p1) // Expanding // 3*(-p0+3p1-3p2+p3)^2 t^5 // 5*(-p0+3p1-3p2+p3)(3p0-6p1+3p2) t^4 // 4*(-p0+3p1-3p2+p3)(-3p0+3p1) + 2*(3p0-6p1+3p2)^2 t^3 // 3*(3p0-6p1+3p2)(-3p0+3p1) + 3*(-p0+3p1-3p2+p3)(p0-pt) t^2 // (-3p0+3p1)^2+2(p0-pt)(3p0-6p1+3p2) t // (p0-pt)(-3p0+3p1) double A = 3*sum((-p0+3*p1-3*p2+p3)*(-p0+3*p1-3*p2+p3)); double B = 5*sum((-p0+3*p1-3*p2+p3)*(3*p0-6*p1+3*p2)); double C = 4*sum((-p0+3*p1-3*p2+p3)*(-3*p0+3*p1)) + 2*sum((3*p0-6*p1+3*p2)*(3*p0-6*p1+3*p2)); double D = 3*(sum((3*p0-6*p1+3*p2)*(-3*p0+3*p1)) + sum((-p0+3*p1-3*p2+p3)*(p0-pt))); double E = sum((-3*p0+3*p1)*(-3*p0+3*p1)) + 2*sum((p0-pt)*(3*p0-6*p1+3*p2)); double F = sum((p0-pt)*(-3*p0+3*p1)); // normalize the polynomial B /= A; C /= A; D /= A; E /= A; F /= A; // Isolator Polynomials: // https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.2233&rep=rep1&type=pdf // x/5 + B/25 // /----------------------------------------------------- // 5x^4 + 4B x^3 + 3C x^2 + 2D x + E / x^5 + B x^4 + C x^3 + D x^2 + E x + F // x^5 + 4B/5 x^4 + 3C/5 x^3 + 2D/5 x^2 + E/5 x // ---------------------------------------------------- // B/5 x^4 + 2C/5 x^3 + 3D/5 x^2 + 4E/5 x + F // B/5 x^4 + 4B^2/25 x^3 + 3BC/25 x^2 + 2BD/25 x + BE/25 // ---------------------------------------------------- // (2C/5 - 4B^2/25)x^3 + (3D/5-3BC/25)x^2 + (4E/5-2BD/25) + (F-BE/25) auto p1A = ((2 / 5.f) * C - (4 / 25.f) * B * B); auto p1B = ((3 / 5.f) * D - (3 / 25.f) * B * C); auto p1C = ((4 / 5.f) * E - (2 / 25.f) * B * D); auto p1D = F - B * E / 25.f; // auto q1A = 1 / 5.f; // auto q1B = B / 25.f; // x/5 + B/25 = 0 // x = -B/5 auto q_root = -B/5.f; double p_roots[3]; int num_sol = solve_cubic(p1A, p1B, p1C, p1D, p_roots); float intervals[4]; if (q_root >= 0 && q_root <= 1) { intervals[0] = q_root; } for (int j = 0; j < num_sol; j++) { intervals[j + 1] = p_roots[j]; } auto num_intervals = 1 + num_sol; // sort intervals for (int j = 1; j < num_intervals; j++) { for (int k = j; k > 0 && intervals[k - 1] > intervals[k]; k--) { auto tmp = intervals[k]; intervals[k] = intervals[k - 1]; intervals[k - 1] = tmp; } } auto eval_polynomial = [&] (double t) { return t*t*t*t*t+ B*t*t*t*t+ C*t*t*t+ D*t*t+ E*t+ F; }; auto eval_polynomial_deriv = [&] (double t) { return 5*t*t*t*t+ 4*B*t*t*t+ 3*C*t*t+ 2*D*t+ E; }; auto lower_bound = 0.f; for (int j = 0; j < num_intervals + 1; j++) { if (j < num_intervals && intervals[j] < 0.f) { continue; } auto upper_bound = j < num_intervals ? min(intervals[j], 1.f) : 1.f; auto lb = lower_bound; auto ub = upper_bound; auto lb_eval = eval_polynomial(lb); auto ub_eval = eval_polynomial(ub); if (lb_eval * ub_eval > 0) { // Doesn't have root continue; } if (lb_eval > ub_eval) { swap_(lb, ub); } auto t = 0.5f * (lb + ub); auto num_iter = 20; for (int it = 0; it < num_iter; it++) { if (!(t >= lb && t <= ub)) { t = 0.5f * (lb + ub); } auto value = eval_polynomial(t); if (fabs(value) < 1e-5f || it == num_iter - 1) { break; } // The derivative may not be entirely accurate, // but the bisection is going to handle this if (value > 0.f) { ub = t; } else { lb = t; } auto derivative = eval_polynomial_deriv(t); t -= value / derivative; } auto p = eval(t); auto distp = distance(p, pt); if (distp < dist) { dist = distp; closest_pt = p; t_root = t; } if (upper_bound >= 1.f) { break; } lower_bound = upper_bound; } } else { assert(false); } if (dist < min_dist) { min_dist = dist; ret_pt = closest_pt; path_info->base_point_id = base_point_id; path_info->point_id = point_id; path_info->t_root = t_root; found = true; } } else { assert(node.child0 >= 0 && node.child1 >= 0); const AABB &b0 = bvh_nodes[node.child0].box; if (within_distance(b0, pt, min_dist)) { bvh_stack[stack_size++] = node.child0; } const AABB &b1 = bvh_nodes[node.child1].box; if (within_distance(b1, pt, min_dist)) { bvh_stack[stack_size++] = node.child1; } assert(stack_size <= max_bvh_size); } } if (found) { assert(path_info->base_point_id < num_segments); } *result = ret_pt; return found; } DEVICE inline bool closest_point(const Rect &rect, const Vector2f &pt, Vector2f *result) { auto min_dist = 0.f; auto closest_pt = Vector2f{0, 0}; auto update = [&](const Vector2f &p0, const Vector2f &p1, bool first) { // project pt to line auto t = dot(pt - p0, p1 - p0) / dot(p1 - p0, p1 - p0); if (t < 0) { auto d = distance(p0, pt); if (first || d < min_dist) { min_dist = d; closest_pt = p0; } } else if (t > 1) { auto d = distance(p1, pt); if (first || d < min_dist) { min_dist = d; closest_pt = p1; } } else { auto p = p0 + t * (p1 - p0); auto d = distance(p, pt); if (first || d < min_dist) { min_dist = d; closest_pt = p0; } } }; auto left_top = rect.p_min; auto right_top = Vector2f{rect.p_max.x, rect.p_min.y}; auto left_bottom = Vector2f{rect.p_min.x, rect.p_max.y}; auto right_bottom = rect.p_max; update(left_top, left_bottom, true); update(left_top, right_top, false); update(right_top, right_bottom, false); update(left_bottom, right_bottom, false); *result = closest_pt; return true; } DEVICE inline bool closest_point(const Shape &shape, const BVHNode *bvh_nodes, const Vector2f &pt, float max_radius, ClosestPointPathInfo *path_info, Vector2f *result) { switch (shape.type) { case ShapeType::Circle: return closest_point(*(const Circle *)shape.ptr, pt, result); case ShapeType::Ellipse: // https://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf assert(false); return false; case ShapeType::Path: return closest_point(*(const Path *)shape.ptr, bvh_nodes, pt, max_radius, path_info, result); case ShapeType::Rect: return closest_point(*(const Rect *)shape.ptr, pt, result); } assert(false); return false; } DEVICE inline bool compute_distance(const SceneData &scene, int shape_group_id, const Vector2f &pt, float max_radius, int *min_shape_id, Vector2f *closest_pt_, ClosestPointPathInfo *path_info, float *result) { const ShapeGroup &shape_group = scene.shape_groups[shape_group_id]; // pt is in canvas space, transform it to shape's local space auto local_pt = xform_pt(shape_group.canvas_to_shape, pt); constexpr auto max_bvh_stack_size = 64; int bvh_stack[max_bvh_stack_size]; auto stack_size = 0; bvh_stack[stack_size++] = 2 * shape_group.num_shapes - 2; const auto &bvh_nodes = scene.shape_groups_bvh_nodes[shape_group_id]; auto min_dist = max_radius; auto found = false; while (stack_size > 0) { const BVHNode &node = bvh_nodes[bvh_stack[--stack_size]]; if (node.child1 < 0) { // leaf auto shape_id = node.child0; const auto &shape = scene.shapes[shape_id]; ClosestPointPathInfo local_path_info{-1, -1}; auto local_closest_pt = Vector2f{0, 0}; if (closest_point(shape, scene.path_bvhs[shape_id], local_pt, max_radius, &local_path_info, &local_closest_pt)) { auto closest_pt = xform_pt(shape_group.shape_to_canvas, local_closest_pt); auto dist = distance(closest_pt, pt); if (!found || dist < min_dist) { found = true; min_dist = dist; if (min_shape_id != nullptr) { *min_shape_id = shape_id; } if (closest_pt_ != nullptr) { *closest_pt_ = closest_pt; } if (path_info != nullptr) { *path_info = local_path_info; } } } } else { assert(node.child0 >= 0 && node.child1 >= 0); const AABB &b0 = bvh_nodes[node.child0].box; if (inside(b0, local_pt, max_radius)) { bvh_stack[stack_size++] = node.child0; } const AABB &b1 = bvh_nodes[node.child1].box; if (inside(b1, local_pt, max_radius)) { bvh_stack[stack_size++] = node.child1; } assert(stack_size <= max_bvh_stack_size); } } *result = min_dist; return found; } DEVICE inline void d_closest_point(const Circle &circle, const Vector2f &pt, const Vector2f &d_closest_pt, Circle &d_circle, Vector2f &d_pt) { // return circle.center + circle.radius * normalize(pt - circle.center); auto d_center = d_closest_pt * (1 + d_normalize(pt - circle.center, circle.radius * d_closest_pt)); atomic_add(&d_circle.center.x, d_center); atomic_add(&d_circle.radius, dot(d_closest_pt, normalize(pt - circle.center))); } DEVICE inline void d_closest_point(const Path &path, const Vector2f &pt, const Vector2f &d_closest_pt, const ClosestPointPathInfo &path_info, Path &d_path, Vector2f &d_pt) { auto base_point_id = path_info.base_point_id; auto point_id = path_info.point_id; auto min_t_root = path_info.t_root; if (path.num_control_points[base_point_id] == 0) { // Straight line auto i0 = point_id; auto i1 = (point_id + 1) % path.num_points; auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]}; auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]}; // project pt to line auto t = dot(pt - p0, p1 - p0) / dot(p1 - p0, p1 - p0); auto d_p0 = Vector2f{0, 0}; auto d_p1 = Vector2f{0, 0}; if (t < 0) { d_p0 += d_closest_pt; } else if (t > 1) { d_p1 += d_closest_pt; } else { auto d_p = d_closest_pt; // p = p0 + t * (p1 - p0) d_p0 += d_p * (1 - t); d_p1 += d_p * t; } atomic_add(d_path.points + 2 * i0, d_p0); atomic_add(d_path.points + 2 * i1, d_p1); } else if (path.num_control_points[base_point_id] == 1) { // Quadratic Bezier curve auto i0 = point_id; auto i1 = point_id + 1; auto i2 = (point_id + 2) % path.num_points; auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]}; auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]}; auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]}; // auto eval = [&](float t) -> Vector2f { // auto tt = 1 - t; // return (tt*tt)*p0 + (2*tt*t)*p1 + (t*t)*p2; // }; // auto dist0 = distance(eval(0), pt); // auto dist1 = distance(eval(1), pt); auto d_p0 = Vector2f{0, 0}; auto d_p1 = Vector2f{0, 0}; auto d_p2 = Vector2f{0, 0}; auto t = min_t_root; if (t == 0) { d_p0 += d_closest_pt; } else if (t == 1) { d_p2 += d_closest_pt; } else { // The curve is (1-t)^2p0 + 2(1-t)tp1 + t^2p2 // = (p0-2p1+p2)t^2+(-2p0+2p1)t+p0 = q // Want to solve (q - pt) dot q' = 0 // q' = (p0-2p1+p2)t + (-p0+p1) // Expanding (p0-2p1+p2)^2 t^3 + // 3(p0-2p1+p2)(-p0+p1) t^2 + // (2(-p0+p1)^2+(p0-2p1+p2)(p0-pt))t + // (-p0+p1)(p0-pt) = 0 auto A = sum((p0-2*p1+p2)*(p0-2*p1+p2)); auto B = sum(3*(p0-2*p1+p2)*(-p0+p1)); auto C = sum(2*(-p0+p1)*(-p0+p1)+(p0-2*p1+p2)*(p0-pt)); // auto D = sum((-p0+p1)*(p0-pt)); auto d_p = d_closest_pt; // p = eval(t) auto tt = 1 - t; // (tt*tt)*p0 + (2*tt*t)*p1 + (t*t)*p2 auto d_tt = 2 * tt * dot(d_p, p0) + 2 * t * dot(d_p, p1); auto d_t = -d_tt + 2 * tt * dot(d_p, p1) + 2 * t * dot(d_p, p2); auto d_p0 = d_p * tt * tt; auto d_p1 = 2 * d_p * tt * t; auto d_p2 = d_p * t * t; // implicit function theorem: dt/dA = -1/(p'(t)) * dp/dA auto poly_deriv_t = 3 * A * t * t + 2 * B * t + C; if (fabs(poly_deriv_t) > 1e-6f) { auto d_A = - (d_t / poly_deriv_t) * t * t * t; auto d_B = - (d_t / poly_deriv_t) * t * t; auto d_C = - (d_t / poly_deriv_t) * t; auto d_D = - (d_t / poly_deriv_t); // A = sum((p0-2*p1+p2)*(p0-2*p1+p2)) // B = sum(3*(p0-2*p1+p2)*(-p0+p1)) // C = sum(2*(-p0+p1)*(-p0+p1)+(p0-2*p1+p2)*(p0-pt)) // D = sum((-p0+p1)*(p0-pt)) d_p0 += 2*d_A*(p0-2*p1+p2)+ 3*d_B*((-p0+p1)-(p0-2*p1+p2))+ 2*d_C*(-2*(-p0+p1))+ d_C*((p0-pt)+(p0-2*p1+p2))+ 2*d_D*(-(p0-pt)+(-p0+p1)); d_p1 += (-2)*2*d_A*(p0-2*p1+p2)+ 3*d_B*(-2*(-p0+p1)+(p0-2*p1+p2))+ 2*d_C*(2*(-p0+p1))+ d_C*((-2)*(p0-pt))+ d_D*(p0-pt); d_p2 += 2*d_A*(p0-2*p1+p2)+ 3*d_B*(-p0+p1)+ d_C*(p0-pt); d_pt += d_C*(-(p0-2*p1+p2))+ d_D*(-(-p0+p1)); } } atomic_add(d_path.points + 2 * i0, d_p0); atomic_add(d_path.points + 2 * i1, d_p1); atomic_add(d_path.points + 2 * i2, d_p2); } else if (path.num_control_points[base_point_id] == 2) { // Cubic Bezier curve auto i0 = point_id; auto i1 = point_id + 1; auto i2 = point_id + 2; auto i3 = (point_id + 3) % path.num_points; auto p0 = Vector2f{path.points[2 * i0], path.points[2 * i0 + 1]}; auto p1 = Vector2f{path.points[2 * i1], path.points[2 * i1 + 1]}; auto p2 = Vector2f{path.points[2 * i2], path.points[2 * i2 + 1]}; auto p3 = Vector2f{path.points[2 * i3], path.points[2 * i3 + 1]}; // auto eval = [&](float t) -> Vector2f { // auto tt = 1 - t; // return (tt*tt*tt)*p0 + (3*tt*tt*t)*p1 + (3*tt*t*t)*p2 + (t*t*t)*p3; // }; auto d_p0 = Vector2f{0, 0}; auto d_p1 = Vector2f{0, 0}; auto d_p2 = Vector2f{0, 0}; auto d_p3 = Vector2f{0, 0}; auto t = min_t_root; if (t == 0) { // closest_pt = p0 d_p0 += d_closest_pt; } else if (t == 1) { // closest_pt = p1 d_p3 += d_closest_pt; } else { // The curve is (1 - t)^3 p0 + 3 * (1 - t)^2 t p1 + 3 * (1 - t) t^2 p2 + t^3 p3 // = (-p0+3p1-3p2+p3) t^3 + (3p0-6p1+3p2) t^2 + (-3p0+3p1) t + p0 // Want to solve (q - pt) dot q' = 0 // q' = 3*(-p0+3p1-3p2+p3)t^2 + 2*(3p0-6p1+3p2)t + (-3p0+3p1) // Expanding // 3*(-p0+3p1-3p2+p3)^2 t^5 // 5*(-p0+3p1-3p2+p3)(3p0-6p1+3p2) t^4 // 4*(-p0+3p1-3p2+p3)(-3p0+3p1) + 2*(3p0-6p1+3p2)^2 t^3 // 3*(3p0-6p1+3p2)(-3p0+3p1) + 3*(-p0+3p1-3p2+p3)(p0-pt) t^2 // (-3p0+3p1)^2+2(p0-pt)(3p0-6p1+3p2) t // (p0-pt)(-3p0+3p1) double A = 3*sum((-p0+3*p1-3*p2+p3)*(-p0+3*p1-3*p2+p3)); double B = 5*sum((-p0+3*p1-3*p2+p3)*(3*p0-6*p1+3*p2)); double C = 4*sum((-p0+3*p1-3*p2+p3)*(-3*p0+3*p1)) + 2*sum((3*p0-6*p1+3*p2)*(3*p0-6*p1+3*p2)); double D = 3*(sum((3*p0-6*p1+3*p2)*(-3*p0+3*p1)) + sum((-p0+3*p1-3*p2+p3)*(p0-pt))); double E = sum((-3*p0+3*p1)*(-3*p0+3*p1)) + 2*sum((p0-pt)*(3*p0-6*p1+3*p2)); double F = sum((p0-pt)*(-3*p0+3*p1)); B /= A; C /= A; D /= A; E /= A; F /= A; // auto eval_polynomial = [&] (double t) { // return t*t*t*t*t+ // B*t*t*t*t+ // C*t*t*t+ // D*t*t+ // E*t+ // F; // }; auto eval_polynomial_deriv = [&] (double t) { return 5*t*t*t*t+ 4*B*t*t*t+ 3*C*t*t+ 2*D*t+ E; }; // auto p = eval(t); auto d_p = d_closest_pt; // (tt*tt*tt)*p0 + (3*tt*tt*t)*p1 + (3*tt*t*t)*p2 + (t*t*t)*p3 auto tt = 1 - t; auto d_tt = 3 * tt * tt * dot(d_p, p0) + 6 * tt * t * dot(d_p, p1) + 3 * t * t * dot(d_p, p2); auto d_t = -d_tt + 3 * tt * tt * dot(d_p, p1) + 6 * tt * t * dot(d_p, p2) + 3 * t * t * dot(d_p, p3); d_p0 += d_p * (tt * tt * tt); d_p1 += d_p * (3 * tt * tt * t); d_p2 += d_p * (3 * tt * t * t); d_p3 += d_p * (t * t * t); // implicit function theorem: dt/dA = -1/(p'(t)) * dp/dA auto poly_deriv_t = eval_polynomial_deriv(t); if (fabs(poly_deriv_t) > 1e-10f) { auto d_B = -(d_t / poly_deriv_t) * t * t * t * t; auto d_C = -(d_t / poly_deriv_t) * t * t * t; auto d_D = -(d_t / poly_deriv_t) * t * t; auto d_E = -(d_t / poly_deriv_t) * t; auto d_F = -(d_t / poly_deriv_t); // B = B' / A // C = C' / A // D = D' / A // E = E' / A // F = F' / A auto d_A = -d_B * B / A -d_C * C / A -d_D * D / A -d_E * E / A -d_F * F / A; d_B /= A; d_C /= A; d_D /= A; d_E /= A; d_F /= A; { double A = 3*sum((-p0+3*p1-3*p2+p3)*(-p0+3*p1-3*p2+p3)) + 1e-3; double B = 5*sum((-p0+3*p1-3*p2+p3)*(3*p0-6*p1+3*p2)); double C = 4*sum((-p0+3*p1-3*p2+p3)*(-3*p0+3*p1)) + 2*sum((3*p0-6*p1+3*p2)*(3*p0-6*p1+3*p2)); double D = 3*(sum((3*p0-6*p1+3*p2)*(-3*p0+3*p1)) + sum((-p0+3*p1-3*p2+p3)*(p0-pt))); double E = sum((-3*p0+3*p1)*(-3*p0+3*p1)) + 2*sum((p0-pt)*(3*p0-6*p1+3*p2)); double F = sum((p0-pt)*(-3*p0+3*p1)); B /= A; C /= A; D /= A; E /= A; F /= A; auto eval_polynomial = [&] (double t) { return t*t*t*t*t+ B*t*t*t*t+ C*t*t*t+ D*t*t+ E*t+ F; }; auto eval_polynomial_deriv = [&] (double t) { return 5*t*t*t*t+ 4*B*t*t*t+ 3*C*t*t+ 2*D*t+ E; }; auto lb = t - 1e-2f; auto ub = t + 1e-2f; auto lb_eval = eval_polynomial(lb); auto ub_eval = eval_polynomial(ub); if (lb_eval > ub_eval) { swap_(lb, ub); } auto t_ = 0.5f * (lb + ub); auto num_iter = 20; for (int it = 0; it < num_iter; it++) { if (!(t_ >= lb && t_ <= ub)) { t_ = 0.5f * (lb + ub); } auto value = eval_polynomial(t_); if (fabs(value) < 1e-5f || it == num_iter - 1) { break; } // The derivative may not be entirely accurate, // but the bisection is going to handle this if (value > 0.f) { ub = t_; } else { lb = t_; } auto derivative = eval_polynomial_deriv(t); t_ -= value / derivative; } } // A = 3*sum((-p0+3*p1-3*p2+p3)*(-p0+3*p1-3*p2+p3)) d_p0 += d_A * 3 * (-1) * 2 * (-p0+3*p1-3*p2+p3); d_p1 += d_A * 3 * 3 * 2 * (-p0+3*p1-3*p2+p3); d_p2 += d_A * 3 * (-3) * 2 * (-p0+3*p1-3*p2+p3); d_p3 += d_A * 3 * 1 * 2 * (-p0+3*p1-3*p2+p3); // B = 5*sum((-p0+3*p1-3*p2+p3)*(3*p0-6*p1+3*p2)) d_p0 += d_B * 5 * ((-1) * (3*p0-6*p1+3*p2) + 3 * (-p0+3*p1-3*p2+p3)); d_p1 += d_B * 5 * (3 * (3*p0-6*p1+3*p2) + (-6) * (-p0+3*p1-3*p2+p3)); d_p2 += d_B * 5 * ((-3) * (3*p0-6*p1+3*p2) + 3 * (-p0+3*p1-3*p2+p3)); d_p3 += d_B * 5 * (3*p0-6*p1+3*p2); // C = 4*sum((-p0+3*p1-3*p2+p3)*(-3*p0+3*p1)) + 2*sum((3*p0-6*p1+3*p2)*(3*p0-6*p1+3*p2)) d_p0 += d_C * 4 * ((-1) * (-3*p0+3*p1) + (-3) * (-p0+3*p1-3*p2+p3)) + d_C * 2 * (3 * 2 * (3*p0-6*p1+3*p2)); d_p1 += d_C * 4 * (3 * (-3*p0+3*p1) + 3 * (-p0+3*p1-3*p2+p3)) + d_C * 2 * ((-6) * 2 * (3*p0-6*p1+3*p2)); d_p2 += d_C * 4 * ((-3) * (-3*p0+3*p1)) + d_C * 2 * (3 * 2 * (3*p0-6*p1+3*p2)); d_p3 += d_C * 4 * (-3*p0+3*p1); // D = 3*(sum((3*p0-6*p1+3*p2)*(-3*p0+3*p1)) + sum((-p0+3*p1-3*p2+p3)*(p0-pt))) d_p0 += d_D * 3 * (3 * (-3*p0+3*p1) + (-3) * (3*p0-6*p1+3*p2)) + d_D * 3 * ((-1) * (p0-pt) + 1 * (-p0+3*p1-3*p2+p3)); d_p1 += d_D * 3 * ((-6) * (-3*p0+3*p1) + (3) * (3*p0-6*p1+3*p2)) + d_D * 3 * (3 * (p0-pt)); d_p2 += d_D * 3 * (3 * (-3*p0+3*p1)) + d_D * 3 * ((-3) * (p0-pt)); d_pt += d_D * 3 * ((-1) * (-p0+3*p1-3*p2+p3)); // E = sum((-3*p0+3*p1)*(-3*p0+3*p1)) + 2*sum((p0-pt)*(3*p0-6*p1+3*p2)) d_p0 += d_E * ((-3) * 2 * (-3*p0+3*p1)) + d_E * 2 * (1 * (3*p0-6*p1+3*p2) + 3 * (p0-pt)); d_p1 += d_E * ( 3 * 2 * (-3*p0+3*p1)) + d_E * 2 * ((-6) * (p0-pt)); d_p2 += d_E * 2 * ( 3 * (p0-pt)); d_pt += d_E * 2 * ((-1) * (3*p0-6*p1+3*p2)); // F = sum((p0-pt)*(-3*p0+3*p1)) d_p0 += d_F * (1 * (-3*p0+3*p1)) + d_F * ((-3) * (p0-pt)); d_p1 += d_F * (3 * (p0-pt)); d_pt += d_F * ((-1) * (-3*p0+3*p1)); } } atomic_add(d_path.points + 2 * i0, d_p0); atomic_add(d_path.points + 2 * i1, d_p1); atomic_add(d_path.points + 2 * i2, d_p2); atomic_add(d_path.points + 2 * i3, d_p3); } else { assert(false); } } DEVICE inline void d_closest_point(const Rect &rect, const Vector2f &pt, const Vector2f &d_closest_pt, Rect &d_rect, Vector2f &d_pt) { auto dist = [&](const Vector2f &p0, const Vector2f &p1) -> float { // project pt to line auto t = dot(pt - p0, p1 - p0) / dot(p1 - p0, p1 - p0); if (t < 0) { return distance(p0, pt); } else if (t > 1) { return distance(p1, pt); } else { return distance(p0 + t * (p1 - p0), pt); } // return 0; }; auto left_top = rect.p_min; auto right_top = Vector2f{rect.p_max.x, rect.p_min.y}; auto left_bottom = Vector2f{rect.p_min.x, rect.p_max.y}; auto right_bottom = rect.p_max; auto left_dist = dist(left_top, left_bottom); auto top_dist = dist(left_top, right_top); auto right_dist = dist(right_top, right_bottom); auto bottom_dist = dist(left_bottom, right_bottom); int min_id = 0; auto min_dist = left_dist; if (top_dist < min_dist) { min_dist = top_dist; min_id = 1; } if (right_dist < min_dist) { min_dist = right_dist; min_id = 2; } if (bottom_dist < min_dist) { min_dist = bottom_dist; min_id = 3; } auto d_update = [&](const Vector2f &p0, const Vector2f &p1, const Vector2f &d_closest_pt, Vector2f &d_p0, Vector2f &d_p1) { // project pt to line auto t = dot(pt - p0, p1 - p0) / dot(p1 - p0, p1 - p0); if (t < 0) { d_p0 += d_closest_pt; } else if (t > 1) { d_p1 += d_closest_pt; } else { // p = p0 + t * (p1 - p0) auto d_p = d_closest_pt; d_p0 += d_p * (1 - t); d_p1 += d_p * t; auto d_t = sum(d_p * (p1 - p0)); // t = dot(pt - p0, p1 - p0) / dot(p1 - p0, p1 - p0) auto d_numerator = d_t / dot(p1 - p0, p1 - p0); auto d_denominator = d_t * (-t) / dot(p1 - p0, p1 - p0); // numerator = dot(pt - p0, p1 - p0) d_pt += (p1 - p0) * d_numerator; d_p1 += (pt - p0) * d_numerator; d_p0 += ((p0 - p1) + (p0 - pt)) * d_numerator; // denominator = dot(p1 - p0, p1 - p0) d_p1 += 2 * (p1 - p0) * d_denominator; d_p0 += 2 * (p0 - p1) * d_denominator; } }; auto d_left_top = Vector2f{0, 0}; auto d_right_top = Vector2f{0, 0}; auto d_left_bottom = Vector2f{0, 0}; auto d_right_bottom = Vector2f{0, 0}; if (min_id == 0) { d_update(left_top, left_bottom, d_closest_pt, d_left_top, d_left_bottom); } else if (min_id == 1) { d_update(left_top, right_top, d_closest_pt, d_left_top, d_right_top); } else if (min_id == 2) { d_update(right_top, right_bottom, d_closest_pt, d_right_top, d_right_bottom); } else { assert(min_id == 3); d_update(left_bottom, right_bottom, d_closest_pt, d_left_bottom, d_right_bottom); } auto d_p_min = Vector2f{0, 0}; auto d_p_max = Vector2f{0, 0}; // left_top = rect.p_min // right_top = Vector2f{rect.p_max.x, rect.p_min.y} // left_bottom = Vector2f{rect.p_min.x, rect.p_max.y} // right_bottom = rect.p_max d_p_min += d_left_top; d_p_max.x += d_right_top.x; d_p_min.y += d_right_top.y; d_p_min.x += d_left_bottom.x; d_p_max.y += d_left_bottom.y; d_p_max += d_right_bottom; atomic_add(d_rect.p_min, d_p_min); atomic_add(d_rect.p_max, d_p_max); } DEVICE inline void d_closest_point(const Shape &shape, const Vector2f &pt, const Vector2f &d_closest_pt, const ClosestPointPathInfo &path_info, Shape &d_shape, Vector2f &d_pt) { switch (shape.type) { case ShapeType::Circle: d_closest_point(*(const Circle *)shape.ptr, pt, d_closest_pt, *(Circle *)d_shape.ptr, d_pt); break; case ShapeType::Ellipse: // https://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf assert(false); break; case ShapeType::Path: d_closest_point(*(const Path *)shape.ptr, pt, d_closest_pt, path_info, *(Path *)d_shape.ptr, d_pt); break; case ShapeType::Rect: d_closest_point(*(const Rect *)shape.ptr, pt, d_closest_pt, *(Rect *)d_shape.ptr, d_pt); break; } } DEVICE inline void d_compute_distance(const Matrix3x3f &canvas_to_shape, const Matrix3x3f &shape_to_canvas, const Shape &shape, const Vector2f &pt, const Vector2f &closest_pt, const ClosestPointPathInfo &path_info, float d_dist, Matrix3x3f &d_shape_to_canvas, Shape &d_shape, float *d_translation) { if (distance_squared(pt, closest_pt) < 1e-10f) { // The derivative at distance=0 is undefined return; } assert(isfinite(d_dist)); // pt is in canvas space, transform it to shape's local space auto local_pt = xform_pt(canvas_to_shape, pt); auto local_closest_pt = xform_pt(canvas_to_shape, closest_pt); // auto local_closest_pt = closest_point(shape, local_pt); // auto closest_pt = xform_pt(shape_group.shape_to_canvas, local_closest_pt); // auto dist = distance(closest_pt, pt); auto d_pt = Vector2f{0, 0}; auto d_closest_pt = Vector2f{0, 0}; d_distance(closest_pt, pt, d_dist, d_closest_pt, d_pt); assert(isfinite(d_pt)); assert(isfinite(d_closest_pt)); // auto closest_pt = xform_pt(shape_group.shape_to_canvas, local_closest_pt); auto d_local_closest_pt = Vector2f{0, 0}; auto d_shape_to_canvas_ = Matrix3x3f(); d_xform_pt(shape_to_canvas, local_closest_pt, d_closest_pt, d_shape_to_canvas_, d_local_closest_pt); assert(isfinite(d_local_closest_pt)); auto d_local_pt = Vector2f{0, 0}; d_closest_point(shape, local_pt, d_local_closest_pt, path_info, d_shape, d_local_pt); assert(isfinite(d_local_pt)); auto d_canvas_to_shape = Matrix3x3f(); d_xform_pt(canvas_to_shape, pt, d_local_pt, d_canvas_to_shape, d_pt); // http://jack.valmadre.net/notes/2016/09/04/back-prop-differentials/#back-propagation-using-differentials auto tc2s = transpose(canvas_to_shape); d_shape_to_canvas_ += -tc2s * d_canvas_to_shape * tc2s; atomic_add(&d_shape_to_canvas(0, 0), d_shape_to_canvas_); if (d_translation != nullptr) { atomic_add(d_translation, -d_pt); } }