Spaces:
Runtime error
Runtime error
/* | |
tests/test_virtual_functions.cpp -- overriding virtual functions from Python | |
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> | |
All rights reserved. Use of this source code is governed by a | |
BSD-style license that can be found in the LICENSE file. | |
*/ | |
/* This is an example class that we'll want to be able to extend from Python */ | |
class ExampleVirt { | |
public: | |
ExampleVirt(int state) : state(state) { print_created(this, state); } | |
ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); } | |
ExampleVirt(ExampleVirt &&e) : state(e.state) { print_move_created(this); e.state = 0; } | |
virtual ~ExampleVirt() { print_destroyed(this); } | |
virtual int run(int value) { | |
py::print("Original implementation of " | |
"ExampleVirt::run(state={}, value={}, str1={}, str2={})"_s.format(state, value, get_string1(), *get_string2())); | |
return state + value; | |
} | |
virtual bool run_bool() = 0; | |
virtual void pure_virtual() = 0; | |
// Returning a reference/pointer to a type converted from python (numbers, strings, etc.) is a | |
// bit trickier, because the actual int& or std::string& or whatever only exists temporarily, so | |
// we have to handle it specially in the trampoline class (see below). | |
virtual const std::string &get_string1() { return str1; } | |
virtual const std::string *get_string2() { return &str2; } | |
private: | |
int state; | |
const std::string str1{"default1"}, str2{"default2"}; | |
}; | |
/* This is a wrapper class that must be generated */ | |
class PyExampleVirt : public ExampleVirt { | |
public: | |
using ExampleVirt::ExampleVirt; /* Inherit constructors */ | |
int run(int value) override { | |
/* Generate wrapping code that enables native function overloading */ | |
PYBIND11_OVERLOAD( | |
int, /* Return type */ | |
ExampleVirt, /* Parent class */ | |
run, /* Name of function */ | |
value /* Argument(s) */ | |
); | |
} | |
bool run_bool() override { | |
PYBIND11_OVERLOAD_PURE( | |
bool, /* Return type */ | |
ExampleVirt, /* Parent class */ | |
run_bool, /* Name of function */ | |
/* This function has no arguments. The trailing comma | |
in the previous line is needed for some compilers */ | |
); | |
} | |
void pure_virtual() override { | |
PYBIND11_OVERLOAD_PURE( | |
void, /* Return type */ | |
ExampleVirt, /* Parent class */ | |
pure_virtual, /* Name of function */ | |
/* This function has no arguments. The trailing comma | |
in the previous line is needed for some compilers */ | |
); | |
} | |
// We can return reference types for compatibility with C++ virtual interfaces that do so, but | |
// note they have some significant limitations (see the documentation). | |
const std::string &get_string1() override { | |
PYBIND11_OVERLOAD( | |
const std::string &, /* Return type */ | |
ExampleVirt, /* Parent class */ | |
get_string1, /* Name of function */ | |
/* (no arguments) */ | |
); | |
} | |
const std::string *get_string2() override { | |
PYBIND11_OVERLOAD( | |
const std::string *, /* Return type */ | |
ExampleVirt, /* Parent class */ | |
get_string2, /* Name of function */ | |
/* (no arguments) */ | |
); | |
} | |
}; | |
class NonCopyable { | |
public: | |
NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); } | |
NonCopyable(NonCopyable &&o) { value = std::move(o.value); print_move_created(this); } | |
NonCopyable(const NonCopyable &) = delete; | |
NonCopyable() = delete; | |
void operator=(const NonCopyable &) = delete; | |
void operator=(NonCopyable &&) = delete; | |
std::string get_value() const { | |
if (value) return std::to_string(*value); else return "(null)"; | |
} | |
~NonCopyable() { print_destroyed(this); } | |
private: | |
std::unique_ptr<int> value; | |
}; | |
// This is like the above, but is both copy and movable. In effect this means it should get moved | |
// when it is not referenced elsewhere, but copied if it is still referenced. | |
class Movable { | |
public: | |
Movable(int a, int b) : value{a+b} { print_created(this, a, b); } | |
Movable(const Movable &m) { value = m.value; print_copy_created(this); } | |
Movable(Movable &&m) { value = std::move(m.value); print_move_created(this); } | |
std::string get_value() const { return std::to_string(value); } | |
~Movable() { print_destroyed(this); } | |
private: | |
int value; | |
}; | |
class NCVirt { | |
public: | |
virtual ~NCVirt() { } | |
NCVirt() = default; | |
NCVirt(const NCVirt&) = delete; | |
virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); } | |
virtual Movable get_movable(int a, int b) = 0; | |
std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); } | |
std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); } | |
}; | |
class NCVirtTrampoline : public NCVirt { | |
NonCopyable get_noncopyable(int a, int b) override { | |
PYBIND11_OVERLOAD(NonCopyable, NCVirt, get_noncopyable, a, b); | |
} | |
Movable get_movable(int a, int b) override { | |
PYBIND11_OVERLOAD_PURE(Movable, NCVirt, get_movable, a, b); | |
} | |
}; | |
struct Base { | |
/* for some reason MSVC2015 can't compile this if the function is pure virtual */ | |
virtual std::string dispatch() const { return {}; }; | |
virtual ~Base() = default; | |
Base() = default; | |
Base(const Base&) = delete; | |
}; | |
struct DispatchIssue : Base { | |
virtual std::string dispatch() const { | |
PYBIND11_OVERLOAD_PURE(std::string, Base, dispatch, /* no arguments */); | |
} | |
}; | |
static void test_gil() { | |
{ | |
py::gil_scoped_acquire lock; | |
py::print("1st lock acquired"); | |
} | |
{ | |
py::gil_scoped_acquire lock; | |
py::print("2nd lock acquired"); | |
} | |
} | |
static void test_gil_from_thread() { | |
py::gil_scoped_release release; | |
std::thread t(test_gil); | |
t.join(); | |
} | |
// Forward declaration (so that we can put the main tests here; the inherited virtual approaches are | |
// rather long). | |
void initialize_inherited_virtuals(py::module &m); | |
TEST_SUBMODULE(virtual_functions, m) { | |
// test_override | |
py::class_<ExampleVirt, PyExampleVirt>(m, "ExampleVirt") | |
.def(py::init<int>()) | |
/* Reference original class in function definitions */ | |
.def("run", &ExampleVirt::run) | |
.def("run_bool", &ExampleVirt::run_bool) | |
.def("pure_virtual", &ExampleVirt::pure_virtual); | |
py::class_<NonCopyable>(m, "NonCopyable") | |
.def(py::init<int, int>()); | |
py::class_<Movable>(m, "Movable") | |
.def(py::init<int, int>()); | |
// test_move_support | |
py::class_<NCVirt, NCVirtTrampoline>(m, "NCVirt") | |
.def(py::init<>()) | |
.def("get_noncopyable", &NCVirt::get_noncopyable) | |
.def("get_movable", &NCVirt::get_movable) | |
.def("print_nc", &NCVirt::print_nc) | |
.def("print_movable", &NCVirt::print_movable); | |
m.def("runExampleVirt", [](ExampleVirt *ex, int value) { return ex->run(value); }); | |
m.def("runExampleVirtBool", [](ExampleVirt* ex) { return ex->run_bool(); }); | |
m.def("runExampleVirtVirtual", [](ExampleVirt *ex) { ex->pure_virtual(); }); | |
m.def("cstats_debug", &ConstructorStats::get<ExampleVirt>); | |
initialize_inherited_virtuals(m); | |
// test_alias_delay_initialization1 | |
// don't invoke Python dispatch classes by default when instantiating C++ classes | |
// that were not extended on the Python side | |
struct A { | |
A() = default; | |
A(const A&) = delete; | |
virtual ~A() {} | |
virtual void f() { py::print("A.f()"); } | |
}; | |
struct PyA : A { | |
PyA() { py::print("PyA.PyA()"); } | |
PyA(const PyA&) = delete; | |
~PyA() { py::print("PyA.~PyA()"); } | |
void f() override { | |
py::print("PyA.f()"); | |
// This convolution just gives a `void`, but tests that PYBIND11_TYPE() works to protect | |
// a type containing a , | |
PYBIND11_OVERLOAD(PYBIND11_TYPE(typename std::enable_if<true, void>::type), A, f); | |
} | |
}; | |
py::class_<A, PyA>(m, "A") | |
.def(py::init<>()) | |
.def("f", &A::f); | |
m.def("call_f", [](A *a) { a->f(); }); | |
// test_alias_delay_initialization2 | |
// ... unless we explicitly request it, as in this example: | |
struct A2 { | |
A2() = default; | |
A2(const A2&) = delete; | |
virtual ~A2() {} | |
virtual void f() { py::print("A2.f()"); } | |
}; | |
struct PyA2 : A2 { | |
PyA2() { py::print("PyA2.PyA2()"); } | |
PyA2(const PyA2&) = delete; | |
~PyA2() { py::print("PyA2.~PyA2()"); } | |
void f() override { | |
py::print("PyA2.f()"); | |
PYBIND11_OVERLOAD(void, A2, f); | |
} | |
}; | |
py::class_<A2, PyA2>(m, "A2") | |
.def(py::init_alias<>()) | |
.def(py::init([](int) { return new PyA2(); })) | |
.def("f", &A2::f); | |
m.def("call_f", [](A2 *a2) { a2->f(); }); | |
// test_dispatch_issue | |
// #159: virtual function dispatch has problems with similar-named functions | |
py::class_<Base, DispatchIssue>(m, "DispatchIssue") | |
.def(py::init<>()) | |
.def("dispatch", &Base::dispatch); | |
m.def("dispatch_issue_go", [](const Base * b) { return b->dispatch(); }); | |
// test_override_ref | |
// #392/397: overriding reference-returning functions | |
class OverrideTest { | |
public: | |
struct A { std::string value = "hi"; }; | |
std::string v; | |
A a; | |
explicit OverrideTest(const std::string &v) : v{v} {} | |
OverrideTest() = default; | |
OverrideTest(const OverrideTest&) = delete; | |
virtual std::string str_value() { return v; } | |
virtual std::string &str_ref() { return v; } | |
virtual A A_value() { return a; } | |
virtual A &A_ref() { return a; } | |
virtual ~OverrideTest() = default; | |
}; | |
class PyOverrideTest : public OverrideTest { | |
public: | |
using OverrideTest::OverrideTest; | |
std::string str_value() override { PYBIND11_OVERLOAD(std::string, OverrideTest, str_value); } | |
// Not allowed (uncommenting should hit a static_assert failure): we can't get a reference | |
// to a python numeric value, since we only copy values in the numeric type caster: | |
// std::string &str_ref() override { PYBIND11_OVERLOAD(std::string &, OverrideTest, str_ref); } | |
// But we can work around it like this: | |
private: | |
std::string _tmp; | |
std::string str_ref_helper() { PYBIND11_OVERLOAD(std::string, OverrideTest, str_ref); } | |
public: | |
std::string &str_ref() override { return _tmp = str_ref_helper(); } | |
A A_value() override { PYBIND11_OVERLOAD(A, OverrideTest, A_value); } | |
A &A_ref() override { PYBIND11_OVERLOAD(A &, OverrideTest, A_ref); } | |
}; | |
py::class_<OverrideTest::A>(m, "OverrideTest_A") | |
.def_readwrite("value", &OverrideTest::A::value); | |
py::class_<OverrideTest, PyOverrideTest>(m, "OverrideTest") | |
.def(py::init<const std::string &>()) | |
.def("str_value", &OverrideTest::str_value) | |
// .def("str_ref", &OverrideTest::str_ref) | |
.def("A_value", &OverrideTest::A_value) | |
.def("A_ref", &OverrideTest::A_ref); | |
} | |
// Inheriting virtual methods. We do two versions here: the repeat-everything version and the | |
// templated trampoline versions mentioned in docs/advanced.rst. | |
// | |
// These base classes are exactly the same, but we technically need distinct | |
// classes for this example code because we need to be able to bind them | |
// properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to | |
// multiple python classes). | |
class A_Repeat { | |
A_METHODS | |
A_Repeat() = default; | |
A_Repeat(const A_Repeat&) = delete; | |
virtual ~A_Repeat() = default; | |
}; | |
class B_Repeat : public A_Repeat { | |
B_METHODS | |
}; | |
class C_Repeat : public B_Repeat { | |
C_METHODS | |
}; | |
class D_Repeat : public C_Repeat { | |
D_METHODS | |
}; | |
// Base classes for templated inheritance trampolines. Identical to the repeat-everything version: | |
class A_Tpl { | |
A_METHODS; | |
A_Tpl() = default; | |
A_Tpl(const A_Tpl&) = delete; | |
virtual ~A_Tpl() = default; | |
}; | |
class B_Tpl : public A_Tpl { B_METHODS }; | |
class C_Tpl : public B_Tpl { C_METHODS }; | |
class D_Tpl : public C_Tpl { D_METHODS }; | |
// Inheritance approach 1: each trampoline gets every virtual method (11 in total) | |
class PyA_Repeat : public A_Repeat { | |
public: | |
using A_Repeat::A_Repeat; | |
int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, A_Repeat, unlucky_number, ); } | |
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, A_Repeat, say_something, times); } | |
}; | |
class PyB_Repeat : public B_Repeat { | |
public: | |
using B_Repeat::B_Repeat; | |
int unlucky_number() override { PYBIND11_OVERLOAD(int, B_Repeat, unlucky_number, ); } | |
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, B_Repeat, say_something, times); } | |
double lucky_number() override { PYBIND11_OVERLOAD(double, B_Repeat, lucky_number, ); } | |
}; | |
class PyC_Repeat : public C_Repeat { | |
public: | |
using C_Repeat::C_Repeat; | |
int unlucky_number() override { PYBIND11_OVERLOAD(int, C_Repeat, unlucky_number, ); } | |
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, C_Repeat, say_something, times); } | |
double lucky_number() override { PYBIND11_OVERLOAD(double, C_Repeat, lucky_number, ); } | |
}; | |
class PyD_Repeat : public D_Repeat { | |
public: | |
using D_Repeat::D_Repeat; | |
int unlucky_number() override { PYBIND11_OVERLOAD(int, D_Repeat, unlucky_number, ); } | |
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, D_Repeat, say_something, times); } | |
double lucky_number() override { PYBIND11_OVERLOAD(double, D_Repeat, lucky_number, ); } | |
}; | |
// Inheritance approach 2: templated trampoline classes. | |
// | |
// Advantages: | |
// - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for | |
// any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11 | |
// methods (repeat). | |
// - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can | |
// properly inherit constructors. | |
// | |
// Disadvantage: | |
// - the compiler must still generate and compile 14 different methods (more, even, than the 11 | |
// required for the repeat approach) instead of the 6 required for MI. (If there was no pure | |
// method (or no pure method override), the number would drop down to the same 11 as the repeat | |
// approach). | |
template <class Base = A_Tpl> | |
class PyA_Tpl : public Base { | |
public: | |
using Base::Base; // Inherit constructors | |
int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, Base, unlucky_number, ); } | |
std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, Base, say_something, times); } | |
}; | |
template <class Base = B_Tpl> | |
class PyB_Tpl : public PyA_Tpl<Base> { | |
public: | |
using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors) | |
int unlucky_number() override { PYBIND11_OVERLOAD(int, Base, unlucky_number, ); } | |
double lucky_number() override { PYBIND11_OVERLOAD(double, Base, lucky_number, ); } | |
}; | |
// Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can | |
// use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead): | |
/* | |
template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> { | |
public: | |
using PyB_Tpl<Base>::PyB_Tpl; | |
}; | |
template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> { | |
public: | |
using PyC_Tpl<Base>::PyC_Tpl; | |
}; | |
*/ | |
void initialize_inherited_virtuals(py::module &m) { | |
// test_inherited_virtuals | |
// Method 1: repeat | |
py::class_<A_Repeat, PyA_Repeat>(m, "A_Repeat") | |
.def(py::init<>()) | |
.def("unlucky_number", &A_Repeat::unlucky_number) | |
.def("say_something", &A_Repeat::say_something) | |
.def("say_everything", &A_Repeat::say_everything); | |
py::class_<B_Repeat, A_Repeat, PyB_Repeat>(m, "B_Repeat") | |
.def(py::init<>()) | |
.def("lucky_number", &B_Repeat::lucky_number); | |
py::class_<C_Repeat, B_Repeat, PyC_Repeat>(m, "C_Repeat") | |
.def(py::init<>()); | |
py::class_<D_Repeat, C_Repeat, PyD_Repeat>(m, "D_Repeat") | |
.def(py::init<>()); | |
// test_ | |
// Method 2: Templated trampolines | |
py::class_<A_Tpl, PyA_Tpl<>>(m, "A_Tpl") | |
.def(py::init<>()) | |
.def("unlucky_number", &A_Tpl::unlucky_number) | |
.def("say_something", &A_Tpl::say_something) | |
.def("say_everything", &A_Tpl::say_everything); | |
py::class_<B_Tpl, A_Tpl, PyB_Tpl<>>(m, "B_Tpl") | |
.def(py::init<>()) | |
.def("lucky_number", &B_Tpl::lucky_number); | |
py::class_<C_Tpl, B_Tpl, PyB_Tpl<C_Tpl>>(m, "C_Tpl") | |
.def(py::init<>()); | |
py::class_<D_Tpl, C_Tpl, PyB_Tpl<D_Tpl>>(m, "D_Tpl") | |
.def(py::init<>()); | |
// Fix issue #1454 (crash when acquiring/releasing GIL on another thread in Python 2.7) | |
m.def("test_gil", &test_gil); | |
m.def("test_gil_from_thread", &test_gil_from_thread); | |
}; | |