import argparse import torch from tinychart.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_PLACEHOLDER, ) from tinychart.conversation import conv_templates, SeparatorStyle from tinychart.model.builder import load_pretrained_model from tinychart.utils import disable_torch_init from tinychart.mm_utils import ( process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, ) from PIL import Image import requests from PIL import Image from io import BytesIO import re def image_parser(args): out = args.image_file.split(args.sep) return out def load_image(image_file): if image_file.startswith("http") or image_file.startswith("https"): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") return image def load_images(image_files): out = [] for image_file in image_files: image = load_image(image_file) out.append(image) return out def inference_model(image_files, query, model, tokenizer, image_processor, context_len, conv_mode, temperature=0, max_new_tokens=100): qs = query image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN if IMAGE_PLACEHOLDER in qs: if model.config.mm_use_im_start_end: qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) else: qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) else: if model.config.mm_use_im_start_end: qs = image_token_se + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs conv = conv_templates[conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() images = load_images(image_files) images_tensor = process_images( images, image_processor, model.config ).to(model.device, dtype=torch.float16) input_ids = ( tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") .unsqueeze(0) .cuda() ) stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=images_tensor, do_sample=True if temperature > 0 else False, temperature=temperature, # top_p=top_p, # num_beams=args.num_beams, pad_token_id=tokenizer.pad_token_id, max_new_tokens=max_new_tokens, use_cache=True, stopping_criteria=[stopping_criteria], ) outputs = tokenizer.batch_decode( output_ids, skip_special_tokens=True )[0] outputs = outputs.strip() if outputs.endswith(stop_str): outputs = outputs[: -len(stop_str)] outputs = outputs.strip() print(outputs) return outputs if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="facebook/opt-350m") parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--image-file", type=str, required=True) parser.add_argument("--query", type=str, required=True) parser.add_argument("--conv-mode", type=str, default=None) parser.add_argument("--sep", type=str, default=",") parser.add_argument("--temperature", type=float, default=0.2) parser.add_argument("--top_p", type=float, default=None) parser.add_argument("--num_beams", type=int, default=1) parser.add_argument("--max_new_tokens", type=int, default=512) args = parser.parse_args() inference_model(args)