import streamlit as st import torch import bitsandbytes import accelerate import scipy from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration def load_caption_model(): processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16, device_map="auto") #model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto") return model, processor def answer_question(image, question, model, processor): image = Image.open(image).convert('RGB') inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs, max_length=200, min_length=20, num_beams=1) answer = processor.decode(out[0], skip_special_tokens=True).strip() return answer st.title("Image Question Answering") # File uploader for the image image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) # Text input for the question question = st.text_input("Enter your question about the image:") if st.button("Get Answer"): if image is not None and question: # Display the image st.image(image, use_column_width=True) # Get and display the answer model, processor = load_caption_model() answer = answer_question(image, question, model, processor) st.write(answer) else: st.write("Please upload an image and enter a question.")