import os import io import torch import PIL from PIL import Image from typing import Optional, Union, List from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration import bitsandbytes import accelerate from my_model.config import captioning_config as config from my_model.utilities.gen_utilities import free_gpu_resources class ImageCaptioningModel: """ A class to handle image captioning using InstructBlip model. Attributes: model_type (str): Type of the model to use. processor (InstructBlipProcessor or None): The processor for handling image input. model (InstructBlipForConditionalGeneration or None): The loaded model. prompt (str): Prompt for the model. max_image_size (int): Maximum size for the input image. min_length (int): Minimum length of the generated caption. max_new_tokens (int): Maximum number of new tokens to generate. model_path (str): Path to the pre-trained model. device_map (str): Device map for model loading. torch_dtype (torch.dtype): Data type for torch tensors. load_in_8bit (bool): Whether to load the model in 8-bit precision. load_in_4bit (bool): Whether to load the model in 4-bit precision. low_cpu_mem_usage (bool): Whether to optimize for low CPU memory usage. skip_special_tokens (bool): Whether to skip special tokens in the generated captions. """ def __init__(self) -> None: """ Initializes the ImageCaptioningModel class with configuration settings. """ self.model_type = config.MODEL_TYPE self.processor = None self.model = None self.prompt = config.PROMPT self.max_image_size = config.MAX_IMAGE_SIZE self.min_length = config.MIN_LENGTH self.max_new_tokens = config.MAX_NEW_TOKENS self.model_path = config.MODEL_PATH self.device_map = config.DEVICE_MAP self.torch_dtype = config.TORCH_DTYPE self.load_in_8bit = config.LOAD_IN_8BIT self.load_in_4bit = config.LOAD_IN_4BIT self.low_cpu_mem_usage = config.LOW_CPU_MEM_USAGE self.skip_secial_tokens = config.SKIP_SPECIAL_TOKENS def load_model(self) -> None: """ Loads the InstructBlip model and processor based on the specified configuration. """ if self.load_in_4bit and self.load_in_8bit: # Ensure only one of 4-bit or 8-bit precision is used. self.load_in_4bit = False if self.model_type == 'i_blip': self.processor = InstructBlipProcessor.from_pretrained(self.model_path, load_in_8bit=self.load_in_8bit, load_in_4bit=self.load_in_4bit, torch_dtype=self.torch_dtype, device_map=self.device_map ) free_gpu_resources() self.model = InstructBlipForConditionalGeneration.from_pretrained(self.model_path, load_in_8bit=self.load_in_8bit, load_in_4bit=self.load_in_4bit, torch_dtype=self.torch_dtype, low_cpu_mem_usage=self.low_cpu_mem_usage, device_map=self.device_map ) free_gpu_resources() def resize_image(self, image: Image.Image, max_image_size: Optional[int] = None) -> Image.Image: """ Resizes the image to fit within the specified maximum size while maintaining aspect ratio. Args: image (Image.Image): The input image to resize. max_image_size (Optional[int]): The maximum size for the resized image. Defaults to None. Returns: Image.Image: The resized image. """ if max_image_size is None: max_image_size = int(os.getenv("MAX_IMAGE_SIZE", "1024")) h, w = image.size scale = max_image_size / max(h, w) if scale < 1: new_w = int(w * scale) new_h = int(h * scale) image = image.resize((new_w, new_h), resample=PIL.Image.Resampling.LANCZOS) return image def generate_caption(self, image_path: Union[str, io.IOBase, Image.Image]) -> str: """ Generates a caption for the given image. Args: image_path (Union[str, io.IOBase, Image.Image]): The path to the image, file-like object, or PIL Image. Returns: str: The generated caption for the image. """ free_gpu_resources() free_gpu_resources() if isinstance(image_path, str) or isinstance(image_path, io.IOBase): # If it's a file path or file-like object, open it as a PIL Image image = Image.open(image_path) elif isinstance(image_path, Image.Image): image = image_path image = self.resize_image(image) inputs = self.processor(image, self.prompt, return_tensors="pt").to("cuda", self.torch_dtype) outputs = self.model.generate(**inputs, min_length=self.min_length, max_new_tokens=self.max_new_tokens) caption = self.processor.decode(outputs[0], skip_special_tokens=self.skip_secial_tokens).strip() free_gpu_resources() free_gpu_resources() return caption def generate_captions_for_multiple_images(self, image_paths: List[Union[str, io.IOBase, Image.Image]]) -> List[str]: """ Generates captions for multiple images. Args: image_paths (List[Union[str, io.IOBase, Image.Image]]): A list of paths to images, file-like objects, or PIL Images. Returns: List[str]: A list of captions for the provided images. """ return [self.generate_caption(image_path) for image_path in image_paths] def get_caption(img: Union[str, io.IOBase, Image.Image]) -> str: """ Loads the captioning model and generates a caption for a single image. Args: img (Union[str, io.IOBase, Image.Image]): The path to the image, file-like object, or PIL Image. Returns: str: The generated caption for the image. """ captioner = ImageCaptioningModel() free_gpu_resources() captioner.load_model() free_gpu_resources() caption = captioner.generate_caption(img) free_gpu_resources() return caption