import json import os import ast from datetime import datetime, timezone from src.display.formatting import styled_error, styled_message, styled_warning from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO from src.submission.check_validity import ( already_submitted_models, check_model_card, get_model_size, is_model_on_hub, ) from src.display.utils import PromptTemplateName REQUESTED_MODELS = None USERS_TO_SUBMISSION_DATES = None PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG = """{ "NCBI" : { "" : "condition" }, "CHIA" : { "" : "condition" "" : "drug" "" : "procedure" "" : "measurement" }, "BIORED" : { "" : "condition" "" : "drug" "" : "gene" "" : "gene variant" }, "BC5CDR" : { "" : "condition" "" : "drug" } } """ def add_new_eval( model: str, # base_model: str, revision: str, # precision: str, # weight_type: str, model_arch: str, label_normalization_map: str, gliner_threshold:str, gliner_tokenizer_bool:str, prompt_template_name:str, model_type: str, ): """ Saves request if valid else returns the error. Validity is checked based on - - model's existence on hub - necessary info on the model's card - label normalization is a valid python dict and contains the keys for all datasets - threshold for gliner is a valid float """ global REQUESTED_MODELS global USERS_TO_SUBMISSION_DATES if not REQUESTED_MODELS: REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) user_name = "" model_path = model if "/" in model: user_name = model.split("/")[0] model_path = model.split("/")[1] # precision = precision.split(" ")[0] current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if model_type is None or model_type == "": return styled_error("Please select a model type.") model_type = model_type.split(":")[-1].strip() # Does the model actually exist? if revision == "": revision = "main" # # Is the model on the hub? # if weight_type in ["Delta", "Adapter"]: # base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True) # if not base_model_on_hub: # return styled_error(f'Base model "{base_model}" {error}') if not model_arch == "GLiNER Encoder": model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True) if not model_on_hub: return styled_error(f'Model "{model}" {error}') else: if len(list(API.list_models(model_name=model))) !=1: return styled_error(f'Model "{model}" does not exist on the hub!') # Is the model info correctly filled? try: model_info = API.model_info(repo_id=model, revision=revision) except Exception: return styled_error("Could not get your model information. Please fill it up properly.") model_size = get_model_size(model_info=model_info) # Were the model card and license filled? try: license = model_info.cardData["license"] except Exception: return styled_error("Please select a license for your model") modelcard_OK, error_msg = check_model_card(model) if not modelcard_OK: return styled_error(error_msg) # Verify the inference config now try: label_normalization_map = ast.literal_eval(label_normalization_map) except Exception as e: return styled_error("Please enter a valid json for the labe; normalization map") inference_config = { # "model_arch" : model_arch, "label_normalization_map": label_normalization_map, } match model_arch: case "Encoder": pass case "Decoder": if not prompt_template_name in [prompt_template.value for prompt_template in PromptTemplateName]: return styled_error("Prompt template name is invalid") inference_config = { **inference_config, "prompt_template_name": prompt_template_name, } case "GLiNER Encoder": try: gliner_threshold = float(gliner_threshold) gliner_tokenizer_bool = ast.literal_eval(gliner_tokenizer_bool) inference_config = { **inference_config, "gliner_threshold": gliner_threshold, "gliner_tokenizer_bool" : gliner_tokenizer_bool } except Exception as e: return styled_error("Please enter a valid float for the threshold") case _: return styled_error("Model Architecture is invalid") # Seems good, creating the eval print("Adding new eval") eval_entry = { "model": model, # "base_model": base_model, "revision": revision, # "precision": precision, # "weight_type": weight_type, "model_architecture": model_arch, "status": "PENDING", "submitted_time": current_time, "model_type": model_type, "likes": model_info.likes, "params": model_size, "license": license, "private": False, "inference_config":inference_config, } # Check for duplicate submission if f"{model}_{revision}" in REQUESTED_MODELS: return styled_warning("This model has been already submitted. Add the revision if the model has been updated.") print("Creating eval file") OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{model_path}_{revision}_eval_request.json" with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path.split("eval-queue/")[1], repo_id=QUEUE_REPO, repo_type="dataset", commit_message=f"Add {model} to eval queue", ) # Remove the local file os.remove(out_path) return styled_message( "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." )